The terminal phosphinidene complex PhPW(CO)5 adds to the imine bond of PhHC=N-Ph to give 3-membered ring azaphosphiridines, which undergo ring-expansion with an additional imine to yield a set of four isomeric five-membered ring diazaphospholanes. Treatment with the diimines PhHC=N-(CH2)n-N=CHPh (n=2,3,4) results instead-in all three cases-in only a single isomer of the (CH2)n bridged diazaphospholane. For n=2 or 3, this aminal group is easily hydrolyzed to afford new 6- and 7-membered ring heterocycles. No intermediate azaphosphiridine complex is observed during the addition reaction to the diimines. B3LYP/6-31G* calculations on an unsubstituted, uncomplexed system suggest that the initially formed P,N-ylide of the H2C=N-(CH)2-N=CH2 diimine both kinetically and thermodynamically favors an intramolecular 1,3-dipolar cycloaddition over an imine insertion into the CPN ring of an intermediate azaphosphiridine. Single-crystal X-ray structures for the (CH2)2-bridged azaphospholane complex and the HCl adduct of the 7-membered hydrolysis product are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.