We present an adaptive version of the Multi-Index Monte Carlo method, introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with coefficients that are random fields. A classical technique for sampling from these random fields is the Karhunen-Loève expansion. Our adaptive algorithm is based on the adaptive algorithm used in sparse grid cubature as introduced by Gerstner and Griebel (2003), and automatically chooses the number of terms needed in this expansion, as well as the required spatial discretizations of the PDE model. We apply the method to a simplified model of a heat exchanger with random insulator material, where the stochastic characteristics are modeled as a lognormal random field, and we show consistent computational savings.
We present a Multi-Index Quasi-Monte Carlo method for the solution of elliptic partial differential equations with random coefficients. By combining the multi-index sampling idea with randomly shifted rank-1 lattice rules, the algorithm constructs an estimator for the expected value of some functional of the solution. The efficiency of this new method is illustrated on a three-dimensional subsurface flow problem with lognormal diffusion coefficient with underlying Matérn covariance function. This example is particularly challenging because of the small correlation length considered, and thus the large number of uncertainties that must be included. We show numerical evidence that it is possible to achieve a cost inversely proportional to the requested tolerance on the root-mean-square error, for problems with a smoothly varying random field.
Civil engineering applications are often characterized by a large uncertainty on the material parameters. Discretization of the underlying equations is typically done by means of the Galerkin Finite Element method. The uncertain material parameter can be expressed as a random field represented by, for example, a Karhunen–Loève expansion. Computation of the stochastic responses, i.e., the expected value and variance of a chosen quantity of interest, remains very costly, even when state-of-the-art Multilevel Monte Carlo (MLMC) is used. A significant cost reduction can be achieved by using a recently developed multilevel method: p-refined Multilevel Quasi-Monte Carlo (p-MLQMC). This method is based on the idea of variance reduction by employing a hierarchical discretization of the problem based on a p-refinement scheme. It is combined with a rank-1 Quasi-Monte Carlo (QMC) lattice rule, which yields faster convergence compared to the use of random Monte Carlo points. In this work, we developed algorithms for the p-MLQMC method for two dimensional problems. The p-MLQMC method is first benchmarked on an academic beam problem. Finally, we use our algorithm for the assessment of the stability of slopes, a problem that arises in geotechnical engineering, and typically suffers from large parameter uncertainty. For both considered problems, we observe a very significant reduction in the amount of computational work with respect to MLMC.
The Multilevel Monte Carlo method is an efficient variance reduction technique. It uses a sequence of coarse approximations to reduce the computational cost in uncertainty quantification applications. The method is nowadays often considered to be the method of choice for solving PDEs with random coefficients when many uncertainties are involved. When using Full Multigrid to solve the deterministic problem, coarse solutions obtained by the solver can be recycled as samples in the Multilevel Monte Carlo method, as was pointed out by Kumar, Oosterlee and Dwight [Int. J. Uncertain. Quantif., 7 (2017), pp. 57-81]. In this article, an alternative approach is considered, using Quasi-Monte Carlo points, to speed up convergence. Additionally, our method comes with an improved variance estimate which is also valid in case of the Monte Carlo based approach. The new method is illustrated on the example of an elliptic PDE with lognormal diffusion coefficient. Numerical results for a variety of random fields with different smoothness parameters in the Matérn covariance function show that sample recycling is more efficient when the input random field is nonsmooth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.