The modeling of living systems composed of many interacting entities is treated in this paper with the aim of describing their collective behaviors. The mathematical approach is developed within the general framework of the kinetic theory of active particles. The presentation is in three parts. First, we derive the mathematical tools, subsequently, we show how the method can be applied to a number of case studies related to well defined living systems, and finally, we look ahead to research perspectives.
We explore the Covid-19 diffusion with an agent-based model of an Italian region with a population on a scale of 1:1000. We also simulate different vaccination strategies. From a decision support system perspective, we investigate the adoption of artificial intelligence techniques to provide suggestions about more effective policies. We adopt the widely used multi-agent programmable modeling environment NetLogo, adding genetic algorithms to evolve the best vaccination criteria. The results suggest a promising methodology for defining vaccine rates by population types over time. The results are encouraging towards a more extensive application of agent-oriented methods in public healthcare policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.