It is not appropriate to compare ratio-based expressions for different cultivars or treatments if a plot of the denominator versus the numerator of a ratio-based expression has a nonzero y-intercept and the values for either the denominators or numerators differ with cultivars or treatments. Whenever nonzero y-intercepts are encountered, the value for a ratio-based expression will be dependent on both the denominator and numerator. The “ratio problem” is demonstrated with shoot N concentration in blueberries (Vaccinium corymbosum L.) and amino acid accumulation in almonds [Prunis dulcis (Mill.) D.A. Webb]. Data were collected from the first and second growth flush of blueberry shoots on plants that were at two in-row spacings and two rates of N fertilizer. Free amino acid:total amino acid ratios were measured in dormant almond trees fertilized at different rates with and without foliar N supplements. Functions describing the relationship between dry weight and total N content in blueberry tissues have positive y-intercepts for both N fertilizer application rates. Functions describing the relationship between total amino acids and free amino acids in almond trees have a negative y-intercept. Differences attributable to fertilization rate in blueberries probably were the result of differences in N uptake and N utilization, but the effects of spacing and growth flush are indirect and can be accounted for by differences in dry weight. Likewise, effects of fertilization rate and foliar N supplement in almonds are indirect and can be accounted for by differences in the total amino acids in dormant trees. With regression one can determine if the relationship between the denominator and numerator differs for the groups or treatments being studied. When an analysis of covariance is used to account for differences in the denominators of ratio-based expressions, results are consistent with the regression analysis. When a conclusion is based on statistical differences of a ratio-based expression, it is the researcher's responsibility to determine whether these effects are direct or indirect.
BackgroundFlavonoids are produced in all flowering plants in a wide range of tissues including in berry fruits. These compounds are of considerable interest for their biological activities, health benefits and potential pharmacological applications. However, transcriptomic and genomic resources for wild and cultivated berry fruit species are often limited, despite their value in underpinning the in-depth study of metabolic pathways, fruit ripening as well as in the identification of genotypes rich in bioactive compounds.ResultsTo access the genetic diversity of wild and cultivated berry fruit species that accumulate high levels of phenolic compounds in their fleshy berry(-like) fruits, we selected 13 species from Europe, South America and Asia representing eight genera, seven families and seven orders within three clades of the kingdom Plantae. RNA from either ripe fruits (ten species) or three ripening stages (two species) as well as leaf RNA (one species) were used to construct, assemble and analyse de novo transcriptomes. The transcriptome sequences are deposited in the BacHBerryGEN database (http://jicbio.nbi.ac.uk/berries) and were used, as a proof of concept, via its BLAST portal (http://jicbio.nbi.ac.uk/berries/blast.html) to identify candidate genes involved in the biosynthesis of phenylpropanoid compounds. Genes encoding regulatory proteins of the anthocyanin biosynthetic pathway (MYB and basic helix-loop-helix (bHLH) transcription factors and WD40 repeat proteins) were isolated using the transcriptomic resources of wild blackberry (Rubus genevieri) and cultivated red raspberry (Rubus idaeus cv. Prestige) and were shown to activate anthocyanin synthesis in Nicotiana benthamiana. Expression patterns of candidate flavonoid gene transcripts were also studied across three fruit developmental stages via the BacHBerryEXP gene expression browser (http://www.bachberryexp.com) in R. genevieri and R. idaeus cv. Prestige.ConclusionsWe report a transcriptome resource that includes data for a wide range of berry(-like) fruit species that has been developed for gene identification and functional analysis to assist in berry fruit improvement. These resources will enable investigations of metabolic processes in berries beyond the phenylpropanoid biosynthetic pathway analysed in this study. The RNA-seq data will be useful for studies of berry fruit development and to select wild plant species useful for plant breeding purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.