Biomedical systems produce biosignals that arise from interaction mechanisms. In a general form, those mechanisms occur across multiple scales, both spatial and temporal, and contain linear and non-linear information. In this framework, entropy measures are good candidates in order provide useful evidence about disorder in the system, lack of information in time-series and/or irregularity of the signals. The most common movement disorder is essential tremor (ET), which occurs 20 times more than Parkinson's disease. Interestingly, about 50%-70% of the cases of ET have a genetic origin. One of the most used standard tests for clinical diagnosis of ET is Archimedes' spiral drawing. This work focuses on the selection of non-linear biomarkers from such drawings and handwriting, and it is part of a wider cross study on the diagnosis of essential tremor, where our piece of research presents the selection of entropy features for early ET diagnosis. Classic entropy features are compared with features based on permutation entropy. Automatic analysis system settled on several Machine Learning paradigms is performed, while automatic features selection is implemented by means of ANOVA (analysis of variance) test. The obtained results for early detection are promising and appear applicable to real environments.
Among neural disorders related to movement, essential tremor has the highest prevalence; in fact, it is twenty times more common than Parkinson’s disease. The drawing of the Archimedes’ spiral is the gold standard test to distinguish between both pathologies. The aim of this paper is to select non-linear biomarkers based on the analysis of digital drawings. It belongs to a larger cross study for early diagnosis of essential tremor that also includes genetic information. The proposed automatic analysis system consists in a hybrid solution: Machine Learning paradigms and automatic selection of features based on statistical tests using medical criteria. Moreover, the selected biomarkers comprise not only commonly used linear features (static and dynamic), but also other non-linear ones: Shannon entropy and Fractal Dimension. The results are hopeful, and the developed tool can easily be adapted to users; and taking into account social and economic points of view, it could be very helpful in real complex environments.
Abstract-Alzheimer's disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity.
Essential tremor (ET) is the most common movement disorder. In fact, its prevalence is about 20 times higher than that of Parkinson's disease. In addition, studies have shown that a high percentage of cases, between 50 and 70%, are estimated to be of genetic origin. The gold standard test for diagnosis, monitoring and to differentiate between both pathologies is based on the drawing of the Archimedes' spiral. Our major challenge is to develop the simplest system able to correctly classify Archimedes' spirals, therefore we will exclusively use the information of the x and y coordinates. This is the minimum information provided by any digitizing device. We explore the use of features from drawings related to the Discrete Cosine Transform as part of a wider cross-study for the diagnosis of essential tremor held at Biodonostia. We compare the performance of these features against other classic and already analyzed ones. We outperform previous results using a very simple system and a reduced set of features. Because the system is simple, it will be possible to implement it in a portable device (microcontroller), which will receive the x and y coordinates and will issue the classification result. This can be done in real time, and therefore without needing any extra job from the medical team. In future works these new drawing-biomarkers will be integrated with the ones obtained in the previous Biodonostia study. Undoubtedly, the use of this technology and user-friendly tools based on indirect measures could provide remarkable social and economic benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.