Physalis is an American plant genus that includes species of economic importance for their edible fruit. Consumption of this fruit is a historic tradition in Mexico. Physalis philadelphica is one of the most abundant species, which can grow under wild, weedy or cultivated conditions. It presents high morphological variability in terms of vegetative and reproductive traits; however, no study has been made of its genetic diversity or the impact of human activity on its diversity and differentiation patterns. We determined genetic parameters in nine populations representing a management gradient, including three wild, three weedy and three cultivated populations, using 88 inter-simple sequence repeat markers. The diversity of the total gene pool was high (Ht = 0.292, HT B = 0.319) and did not decrease with the intensity degree of management. Reproductive system, life form and the wide distribution determined the genetic variation of the taxon. AMOVA revealed high variation within the total gene pool (44.3 %) and among populations (46.7 %). This was influenced by pollinator behavior, dispersal form, geographic discontinuity of the studied populations and human selection. Variation among population management categories was lower (9 %), indicating that this variable has little effect, most likely due to the broad gene pool of the taxon. However, analysis of genetic distance and Bayesian assignment distinguished two groups: cultivated and wild, with weedy populations interspersed between. This result suggests that selection for agricultural and morphological attributes of P. philadelphica contributes to this differentiation. Future studies could address the evolutionary dynamics of the wild-weedy-domesticated complex.
Mexico is the center of diversity of the husk tomato (Physalis L., Solanaceae), which includes a number of commercially important edible and ornamental species. Taxonomic identification is presently based on morphological characteristics, but the presence of high inter-and intraspecific morphological variation makes this task difficult. Six ISSR primers were used on eight Mexican species of Physalis to determine their utility for interspecific taxonomic discrimination and to assess their potential for inferring interspecific relationships. The six ISSR primers amplified 101 bands, with 100% polymorphism across samples. The number of bands per primer varied from 10 to 21. All primers produced different fingerprint profiles for each species, confirming the ISSR value in taxonomic discrimination. Discrimination values based on Simpson's diversity index varied from 0.48 to 0.58. Genetic interspecific similarity values ranged from 0.20 to 0.57, and intraspecific similarity values were highest for Physalis angulata (0.71), followed by Physalis philadelphica (0.63) and Physalis lagascae (0.55). The UPGMA analysis grouped accessions of the same species together and clustered together Physalis species of similar morphological traits. Thus, ISSR markers are useful in estimating genetic relationships in Physalis.
Mexico is a megadiverse country. Presently, 22 126 species of angiosperms have been registered within its territory and 11 001 are considered to be endemic. However, their geographical distributions are far from homogeneous. In addition, Mexico is the center of diversification of several groups. Our analysis focused on such groups. The aims were to identify areas of species richness and endemism. A data matrix with 766 species and 25 579 geographical records was analyzed. It included Calochortus (Liliaceae); Bletia (Orchidaceae); Tigridieae (Iridaceae); Amaryllidaceae; Poliantheae, Echeandia (Asparagaceae); Crassulaceae; Hylocereus (Cactaceae); Solanum, Lycianthes and Physalinae (Solanaceae); Salvia section Membranaceae (Lamiaceae); and Cosmos and Dahlia (Asteraceae). Using Geographic Information Systems, we determined richness and distribution based on: (i) Mexican political divisions, (ii) biogeographical regions and provinces, (iii) a grid of 0.5 × 0.5° cells, and (iv) elevation. The areas of endemism were estimated using the endemicity analysis. The highest number of taxa and endemic plants were concentrated within the Transmexican Volcanic Belt in the Mexican Transition Zone. This mountain range has been recognized as a province on the basis of geologic, tectonic, geomorphologic, physiographic and biogeographic criteria. It is a 1000 km long volcanic arc that extends east to west through Central Mexico and is variably from 80 to 230 km wide, between 17°30′ to 20°25′N and 96°20′ to 105°20′W. Our results represent a local deviation from the global richness latitudinal gradient of angiosperm species.
Lycianthes moziniana (Solanaceae: Capsiceae) is a perennial herb with edible fruits that is endemic to Mexico. Three varieties are recognized, all known in the Mexican Transition Zone. Lycianthes moziniana var. margaretiana grows in the Sierra Madre Oriental, whereas L. moziniana var. moziniana is common along the Trans-Mexican Volcanic Belt and in the Sierra Madre Occidental. Lycianthes moziniana var. oaxacana is found exclusively in the Sierra Madre del Sur. The Mexican Transition Zone is a complex geological, climatic and biogeographical area, the result of tectonic and volcanic activity that has promoted genetic divergence and speciation. We determined the genetic variation and structure of L. moziniana. Using phylogeographical approaches, we described the demographic history and evolutionary processes leading its divergence. The intergenic spacers rpl32-trnL and ycf1 were sequenced for 133 individuals pertaining to 15 populations. The genealogical relationships were analysed using haplotype networks. Finally, based on ecological niche models, we inferred the palaeodistribution of L. moziniana during the Pleistocene. The genetic differences and the haplogroups matched the three described varieties. Geological and climatic events of the Mexican Transition Zone facilitated these results. The Trans-Mexican Volcanic Belt isolated the populations of the Sierra Madre Oriental and the Sierra Madre del Sur, while allowing the migration to the Sierra Madre Occidental, during the middle Holocene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.