Weakly-supervised temporal action localization is a very challenging problem because frame-wise labels are not given in the training stage while the only hint is video-level labels: whether each video contains action frames of interest. Previous methods aggregate frame-level class scores to produce video-level prediction and learn from video-level action labels. This formulation does not fully model the problem in that background frames are forced to be misclassified as action classes to predict video-level labels accurately. In this paper, we design Background Suppression Network (BaS-Net) which introduces an auxiliary class for background and has a two-branch weight-sharing architecture with an asymmetrical training strategy. This enables BaS-Net to suppress activations from background frames to improve localization performance. Extensive experiments demonstrate the effectiveness of BaS-Net and its superiority over the state-of-the-art methods on the most popular benchmarks – THUMOS'14 and ActivityNet. Our code and the trained model are available at https://github.com/Pilhyeon/BaSNet-pytorch.
Weakly-supervised temporal action localization aims to learn detecting temporal intervals of action classes with only video-level labels. To this end, it is crucial to separate frames of action classes from the background frames (i.e., frames not belonging to any action classes). In this paper, we present a new perspective on background frames where they are modeled as out-of-distribution samples regarding their inconsistency. Then, background frames can be detected by estimating the probability of each frame being out-of-distribution, known as uncertainty, but it is infeasible to directly learn uncertainty without frame-level labels. To realize the uncertainty learning in the weakly-supervised setting, we leverage the multiple instance learning formulation. Moreover, we further introduce a background entropy loss to better discriminate background frames by encouraging their in-distribution (action) probabilities to be uniformly distributed over all action classes. Experimental results show that our uncertainty modeling is effective at alleviating the interference of background frames and brings a large performance gain without bells and whistles. We demonstrate that our model significantly outperforms state-of-the-art methods on the benchmarks, THUMOS'14 and ActivityNet (1.2 & 1.3). Our code is available at https://github.com/Pilhyeon/WTAL-Uncertainty-Modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.