Microtubules are crucial targets for cancer chemotherapeutic drugs, and new microtubule-directed agents are of continued interest in drug development. A novel microtubule-directed agent, ethyl-2-[N-rho-chlorobenzyl-(2'-methoxy)]-anilino-4-oxo -4, 5-dihydro-furan-3-carboxylate, was identified. The compound, designated K2154, inhibited cell proliferation, with IC(50) values of 10.3, 15.3, 9.6, 11.2, 12.8 and 12.1 muM in prostate cancer PC-3, hepatocellular carcinoma Hep3B, non-small cell lung cancer A549, colorectal cancer HT29 and HCT116, and P-glycoprotein-rich breast cancer NCI/ADR-RES cells, respectively. Because NCI/ADR-RES cells were susceptible to inhibition by K2154, it indicated that this compound is a poor substrate for P-glycoprotein. In this study, PC-3 cells were used to identify the anticancer mechanisms of K2154. K2154 induced an arrest of the cell cycle at G2/M phase and a subsequent increase of hypodiploid phase in PC-3 cells, whereas it only induced a moderate level of G2/M arrest with little increase of hypodiploid phase in normal prostate cells. K2154 inhibited microtubule assembly in both in vitro turbidity assay and in vivo microtubule spin-down experiment. Immunochemical examination showed that K2154 caused formation of abnormal mitotic characteristics with bipolar spindles, particularly, in beta(II)- and beta(III)-tubulin staining. It also induced several pathways, including cyclin B1 up-regulation, dephosphorylation on Tyr(15) and phosphorylation on Thr(161) of Cdk1 and Cdc25C phosphorylation, and roscovitine (a Cdk1 inhibitor) significantly inhibited K2154-induced apoptosis, suggesting a pro-apoptotic role of Cdk1. Phosphorylation of Bcl-2 and Bcl-xL and cleavage of Mcl-1, together with activation of caspase-9 and -3, indicated that mitochondrial pathway played a central role in K2154-mediated apoptotic cell death. Additionally, AIF contributed to a late phase of K2154-induced apoptotic pathway. In conclusion, it is suggested that K2154 displays an anticancer activity through a target on microtubules and a subsequent signaling cascade on cell cycle regulation and apoptotic machinery.