Spin waves can probe the Dzyaloshinskii-Moriya interaction (DMI) which gives rise to topological spin textures, such as skyrmions. However, the DMI has not yet been reported in yttrium iron garnet (YIG) with arguably the lowest damping for spin waves. In this work, we experimentally evidence the interfacial DMI in a 7 nm-thick YIG film by measuring the nonreciprocal spin-wave propagation in terms of frequency, amplitude and most importantly group velocities using all electrical spin-wave spectroscopy. The velocities of propagating spin waves show chirality among three vectors, i.e. the film normal direction, applied field and spin-wave wavevector. By measuring the asymmetric group velocities, we extract a DMI constant of 16 µJ/m 2 which we independently confirm by Brillouin light scattering. Thickness-dependent measurements reveal that the DMI originates from the oxide interface between the YIG and garnet substrate. The interfacial DMI discovered in the ultrathin YIG films is of key importance for functional chiral magnonics as ultra-low spin-wave damping can be achieved. arXiv:1910.02599v2 [cond-mat.mtrl-sci]
Exchange magnons are essential for unprecedented miniaturization of GHz electronics and magnon-based logic. However, their efficient excitation via microwave fields is still a challenge. Current methods including nanocontacts and grating couplers require advanced nanofabrication tools which limit the broad usage. Here, we report efficient emission and detection of exchange magnons using micron-sized coplanar waveguides (CPWs) into which we integrated ferromagnetic (m) layers. We excited magnons in a broad frequency band with wavelengths λ down to 100 nm propagating over macroscopic distances in thin yttrium iron garnet. Applying time-and spatially resolved Brillouin light scattering as well as micromagnetic simulations we evidence a significant wavelength conversion process near mCPWs via tunable inhomogeneous fields. We show how optimized mCPWs can form microwave-tomagnon transducers providing phase-coherent exchange magnons with λ of 37 nm. Without any nanofabrication they allow one to harvest the advantages of nanomagnonics by antenna designs exploited in conventional microwave circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.