Development of multifunctional nanoplatforms for tumor multimode imaging and therapy is of great necessity. Herein, we report a new type of Au nanostar (NS)-coated, perfluorohexane (PFH)-encapsulated hollow mesoporous silica nanocapsule (HMS) modified with poly(ethylene glycol) (PEG) for tumor multimode ultrasonic (US)/computed tomography (CT)/photoacoustic (PA)/thermal imaging, and photothermal therapy (PTT). HMSs were first synthesized, silanized to have thiol surface groups, and coated with gold nanoparticles via a Au-S bond. Followed by growth of Au NSs on the surface of the HMSs, encapsulation of PFH in the interior of the HMSs, and surface conjugation of thiolated PEG, multifunctional HMSs@Au-PFH-mPEG NSs (for short, HAPP) were formed and well-characterized. We show that the HAPP are stable in a colloidal manner and noncytotoxic in the studied range of concentrations, possess multimode US/CT/PA/thermal imaging ability, and can be applied for multimode US/CT/PA/thermal imaging of tumors in vivo after intravenous or intratumoral injection. Additionally, the near-infrared absorption property of the HAPP enables the use of the HAPP for photothermal ablation of cancer cells in vitro and a tumor model in vivo after intratumoral injection. The developed multifunctional HAPP may be used as a novel multifunctional theranostic nanoplatform for tumor multimode imaging and PTT.
Development of versatile nanomaterials combining diagnostic and therapeutic functionalities within one single nanoplatform is extremely important for tumor theranostics. In this work, the authors report the synthesis of a gold nanostar (Au NS)-based theranostic platform stabilized with cyclic arginine-glycine-aspartic (Arg-Gly-Asp, RGD) peptide-modified amine-terminated generation 3 poly(amidoamine) dendrimers. The formed RGD-modified dendrimer-stabilized Au NSs (RGD-Au DSNSs) are used as a gene delivery vector to complex small interfering RNA (siRNA) for computed tomography (CT) imaging, thermal imaging, photothermal therapy (PTT), and gene therapy of tumors. The results show that the RGD-Au DSNSs are able to compact vascular endothelial growth factor siRNA and specifically deliver siRNA to cancer cells overexpressing α β integrin. Under near-infrared laser irradiation, the viability of cancer cells is only 20.2% after incubation with the RGD-Au DSNS/siRNA polyplexes, which is much lower than that of cells after single PTT or gene therapy treatment. Furthermore, in vivo results show that the RGD-Au DSNS/siRNA polyplexes enable tumor CT imaging, thermal imaging, PTT, and gene therapy after intratumoral injection. These results indicate that the developed multifunctional nanoconstruct is a promising platform for tumor imaging and combinational PTT and gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.