RNA interference (RNAi) was reported to block hepatitis B virus (HBV) gene expression and replication in vitro and in vivo. However, it remains a technical challenge for RNAibased therapy to achieve long-term and complete inhibition effects in chronic HBV infection, which presumably requires more extensive and uniform transduction of the whole infected hepatocytes. To increase the in vivo transfection efficiency in liver, we used a double-stranded adenoassociated virus 8-pseudotyped vector (dsAAV2/8) to deliver shRNA. HBV transgenic mice were used as an animal model to evaluate the inhibition effects of the RNAi-based gene therapy. A single administration of dsAAV2/8 vector, carrying HBV-specific shRNA, effectively suppressed the steady level of HBV protein, mRNA and replicative DNA in liver of HBV transgenic mice, leading to up to 2-3 log 10 decrease in HBV load in the circulation. Significant HBV suppression sustained for at least 120 days after vector administration. The therapeutic effect of shRNA was target sequence dependent and did not involve activation of interferon. These results underscore the potential for developing RNAi-based therapy by dsAAV2/8 vector to treat HBV chronic infection, and possibly other persistent liver infections as well.
The emerging SARS-CoV-2 variants of concern (VOC) harbor mutations associated with increasing transmission and immune escape, hence undermine the effectiveness of current COVID-19 vaccines. In late November of 2021, the Omicron (B.1.1.529) variant was identified in South Africa and rapidly spread across the globe. It was shown to exhibit significant resistance to neutralization by serum not only from convalescent patients, but also from individuals recieving currently used COVID-19 vaccines with multiple booster shots. Therefore, there is an urgent need to develop next generation vaccines against VOCs like Omicron. In this study, we develop a panel of mRNA-LNP-based vaccines using the receptor binding domain (RBD) of Omicron and Delta variants, which are dominant in the current wave of COVID-19. In addition to the Omicron- and Delta-specific vaccines, the panel also includes a Hybrid vaccine that uses the RBD containing all 16 point-mutations shown in Omicron and Delta RBD, as well as a bivalent vaccine composed of both Omicron and Delta RBD-LNP in half dose. Interestingly, both Omicron-specific and Hybrid RBD-LNP elicited extremely high titer of neutralizing antibody against Omicron itself, but few to none neutralizing antibody against other SARS-CoV-2 variants. The bivalent RBD-LNP, on the other hand, generated antibody with broadly neutralizing activity against the wild-type virus and all variants. Surprisingly, similar cross-protection was also shown by the Delta-specifc RBD-LNP. Taken together, our data demonstrated that Omicron-specific mRNA vaccine can induce potent neutralizing antibody response against Omicron, but the inclusion of epitopes from other variants may be required for eliciting cross-protection. This study would lay a foundation for rational development of the next generation vaccines against SARS-CoV-2 VOCs.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, but effective therapies are still needed. The liver has been identified as an important immune organ and is heavily populated with various lymphocyte subsets known to play important roles in cancer immunosurveillance. We hypothesized that activation of hepatic lymphocytes by interleukin (IL)-15, a cytokine known for its ability to trigger proliferation and activation of natural killer (NK) cells, natural killer T cells, and memory CD8(+) T cells, might offer an alternative therapy for HCC. We employed hepatotropic adeno-associated virus serotype 8 (AAV8) to deliver an IL-15 superagonist (IL-15-IL-15RalphaS), consisting of IL-15 covalently linked to the N-terminal sushi domain of the IL-15 receptor alpha chain, to achieve local sustained cytokine expression in the liver environment. We observed that a single injection of AAV8 expressing IL-15-IL-15RalphaS, but not IL-15 alone, greatly expanded the number of hepatic mononuclear cells, mainly NK cells, for at least 21 days. AAV8/IL-15-IL-15RalphaS treatment generated potent antitumor activity in a liver metastatic murine HCC model (BNL cells), and significantly prolonged the survival time of treated animals. The antitumor effect depended mainly on NK cells, not on CD8(+) and CD4(+) T cells, because AAV8/IL-15-IL-15RalphaS treatment greatly enhanced the cytolytic activity of hepatic NK cells and depletion of NK cells abrogated the therapeutic effect. Importantly, no apparent liver toxicity was observed during AAV8/IL-15-IL-15RalphaS treatment. Together, our data demonstrate that AAV8-delivered IL-15-IL-15RalphaS provides an effective and safe therapy against metastatic HCC.
Background With the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy. Methods We report an mRNA-based vaccine using an engineered “hybrid” receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants. Results A booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs. Conclusions These results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.
The COVID-19 pandemic presents an unprecedented challenge to global public health. Rapid development and deployment of safe and effective vaccines are imperative to control the pandemic. In the current study, we applied our adjuvanted stable prefusion SARS-CoV-2 spike (S-2P)-based vaccine, MVC-COV1901, to hamster models to demonstrate immunogenicity and protection from virus challenge. Golden Syrian hamsters immunized intramuscularly with two injections of 1 µg or 5 µg of S-2P adjuvanted with CpG 1018 and aluminum hydroxide (alum) were challenged intranasally with SARS-CoV-2. Prior to virus challenge, the vaccine induced high levels of neutralizing antibodies with 10,000-fold higher IgG level and an average of 50-fold higher pseudovirus neutralizing titers in either dose groups than vehicle or adjuvant control groups. Six days after infection, vaccinated hamsters did not display any weight loss associated with infection and had significantly reduced lung pathology and most importantly, lung viral load levels were reduced to lower than detection limit compared to unvaccinated animals. Vaccination with either 1 μg or 5 μg of adjuvanted S-2P produced comparable immunogenicity and protection from infection. This study builds upon our previous results to support the clinical development of MVC-COV1901 as a safe, highly immunogenic, and protective COVID-19 vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.