Natural ester is currently used as an insulating oil and coolant for medium-power transformers. The biodegradability of insulating natural ester makes it a preferable insulation liquid to mineral oils. In this work, Fe 3 O 4 nanoparticles were used along with oleic acid to improve the performance of insulating natural ester. The micro-morphology of Fe 3 O 4 nanoparticles before and after surface modification was observed through transmission electron microscopy. Attenuated total reflection-Fourier transform infrared spectroscopy, thermal gravimetric analysis, and differential thermal analysis were employed to investigate functional groups and their thermal stability on the surface-modified Fe 3 O 4 nanoparticles. Basic dielectric properties of natural ester-based insulating nanofluid were measured. The electrodynamic process in the natural ester-based insulating nanofluid is also presented.
Insulating vegetable oils are considered environment-friendly and fire-resistant substitutes for insulating mineral oils. This paper presents the lightning impulse breakdown characteristic of insulating vegetable oil and insulating vegetable oil-based nanofluids. It indicates that Fe 3 O 4 nanoparticles can increase the negative lightning impulse breakdown voltages of insulating vegetable oil by 11.8% and positive lightning impulse breakdown voltages by 37.4%. The propagation velocity of streamer is reduced by the presence of nanoparticles. The propagation velocities of streamer to positive and negative lightning impulse breakdown in the insulating vegetable oil-based nanofluids are 21.2% and 14.4% lesser than those in insulating vegetable oils, respectively. The higher electrical breakdown strength and lower streamer velocity is explained by the charging dynamics of nanoparticles in insulating vegetable oil. Space charge build-up and space charge distorted filed in point-sphere gap is also described. The field strength is reduced at the streamer tip due to the low mobility of negative nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.