Cardiovascular disease (CVD) has become the leading cause of morbidity and mortality worldwide. A well-monitored diet with a sufficient intake of fruits and vegetables has been confirmed as a primary prevention of CVD. Plant constituents such as flavonoids have been shown to confer healthy benefits. Luteolin (Lut), a kind of flavonoid, possesses anti-oxidative, anti-tumor, and anti-inflammatory properties. Recent scientific literature has reported the cardiac protective effects of Lut in vitro and in vivo. Therefore, the aim of this review is to provide an update and detailed overview with cardio-protective molecular mechanisms of Lut with a focus on multiple intrinsic and extrinsic effectors. We further explore how these mechanisms participate in ischemia/reperfusion (I/R) injury, heart failure (HF) and atherosclerosis (AS). A proper understanding of the cardiovascular protective effects and the relative mechanisms of Lut may provide the possibility of new drug design and development for CVD. With the previous studies mainly focused on basic research, we need to advance the prospects of its further clinical utilization against CVD, large prospective clinical trials of Lut are needed to observe its therapeutic effects on patients with I/R injury, HF and AS, especially on the effective therapeutic dosage, and safety of long-term administration.
A new acidic polysaccharide (PLP) was isolated and characterized from Plantago asiatic L. seeds by hot alkali extraction and chromatographic purification using DEAE cellulose and Sephacryl S-400 columns. PLP has a molecular weight of 1.15 × 10(6) Da, and a monosaccharide composition of xylose (Xyl), arabinose (Ara), glucuronic acid (GlcA), and galactose (Gal) in a molar ratio of 18.8:7.2:6.1:1. The results of methylation analysis, FT-IR, and 1D and 2D NMR indicated that PLP was a highly branched heteroxylan of β-1,4-linked Xylp backbone with three α-GlcAp-(1→3)-Araf attached to the O-3 position and one α-T-linked-GlcAp and one α-Araf-(1→5)-Araf attached to the O-2 position every eight monosaccharide residues. PLP exhibited scavenging abilities against hydroxyl, peroxyl anion, and DPPH radicals in vitro and showed significant binding capacities against cholic and chenodeoxycholic acids, suggesting its possible cholesterol-lowering activity. The results demonstrated the potential use of PLP in functional foods and nutraceuticals.
A novel polysaccharide (GPP-S), with a molecular mass of 1.2 × 10(6) Da, was isolated from the tetraploid Gynostemma pentaphyllum Makino by alkali extraction followed by purifications using DEAE and Sephacryl S-400 column chromatographies. The monosaccharide composition of GPP-S was determined as rhamnose, arabinose, glucose, and galactose with a molar ratio of 1.00:3.72:19.49:7.82. The structural analysis suggested that the backbone of GPP-S is (1→4)-linked-glucose and (1→6)-linked-galactose with a (1→4,6)-linked-glucose branch every six monosaccharide residues. The terminals were 1-)-α-arabinose, glucuronic acid, and other monosaccharides. GPP-S exhibited scavenging capacities against hydroxyl, peroxyl, and DPPH(•) radicals in vitro. GPP-S also had inhibitory activities on IL-1β, IL-6, and COX-2 gene expressions in RAW 264.7 mouse macrophage cells. These results suggested that GPP-S could be developed as a bioactive ingredient for functional foods and dietary supplements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.