The first systematic mechanism study of C–F reductive elimination from a transition metal complex is described. C–F bond formation from three different Pd(IV) fluoride complexes was mechanistically evaluated. The experimental data suggest that reductive elimination occurs from cationic Pd(IV) fluoride complexes via a dissociative mechanism. The ancillary pyridyl-sulfonamide ligand plays a crucial role for C–F reductive elimination, likely due to a κ3 coordination mode, in which an oxygen atom of the sulfonyl group coordinates to Pd. The pyridyl-sulfonamide can support Pd(IV) and has the appropriate geometry and electronic structure to induce reductive elimination.
Carbon-fluorine bond formation by transition metal catalysis is difficult and only few methods for the synthesis of aryl fluorides have been developed. All reported transition metal-catalyzed fluorination reactions for the synthesis of functionalized arenes are based on palladium. Here we present silver catalysis for carbon-fluorine bond formation. Our report is the first example of the use of the transition metal silver to form carbon-heteroatom bonds by cross-coupling catalysis. The functional group tolerance and substrate scope presented here have not been demonstrated for any other fluorination reaction to date.
A regiospecific silver-mediated fluorination of aryl silanes is reported. The reaction is operationally simple, and employs Ag2O as readily available, inexpensive silver source, which can be recovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.