Tropical and subtropical acidic soils have been well documented as hotspots of global soil nitrogen (N) oxide (i.e., nitrous oxide (N2O) and nitric oxide (NO) emissions). While the effectiveness of possible mitigation options has been extensively examined in croplands, little is known about their effectiveness in reducing N‐oxide emissions from acidic soils of rapidly expanding tea plantations in China. Here, we conducted a 2‐year field experiment to investigate how organic substitution for synthetic fertilizer and biochar amendment affect soil N‐oxide emissions from a subtropical tea plantation. Across the 2‐year measurement period, full organic substitution for synthetic fertilizer significantly increased N2O emissions by an average of 17% while had a lower NO emission compared to synthetic fertilizer alone. Our global meta‐analysis further revealed that full or partial organic fertilizer substitution resulted in a 29% (95% confidence interval: 5%–60%) increase of N2O emissions from acidic soils. In contrast, irrespective of fertilizer type, biochar amendment significantly reduced N2O emissions by 14% in the first but not second experimental year, suggesting a transient effect. The trade‐off effect of full organic substitution on N2O and NO emissions may be attributed to the favorable conditions for N2O production due to the stimulated activity of nitrifiers and denitrifiers. The suppression of N2O emission following biochar amendment was probably due to promoted further reduction of N2O to dinitrogen. The fertilizer‐induced emission factor (EF) of N2O (2.1%) in the tea plantation was greater than the current IPCC default value, but the EF of NO (0.8%) was comparable to the global estimate. Taken together, while biochar amendment could have mitigation potential, cautions are needed when applying organic substitution for synthetic fertilizer as mitigation options for acidic soils as hotspots of N‐oxide emissions.
High nitrogen (N) fertilizer inputs accelerate soil acidification and degradation in tea plantations, thus posing a threat to soil microbial diversity, species composition, and ecosystem service functions. The effects of organic fertilizer and biochar applications on improving soil fertility have been extensively studied on cropland; however, little is known about their effectiveness in promoting soil multifunctionality on rapidly expanding acidic soils in tea plantations. In this study, we conducted a two‐year field experiment in a subtropical tea plantation to investigate the effects of organic fertilizer substitution and biochar amendment on soil microbial communities and multifunctionality. The results showed that soil multifunctionality was enhanced in plots amended with organic fertilizer and biochar. Soil multifunctionality was significantly and positively correlated with alpha‐diversity of bacteria but not fungi. We also found that organic fertilizer substitution and biochar amendment improved soil multifunctionality by altering the abundance of keystone species. The abundance of keystone species classified as module hubs in the bacterial co‐occurrence network contributed significantly and positively to soil multifunctionality. In contrast, the keystone species categorized as module hubs in the fungal co‐occurrence network negatively affected soil multifunctionality. Soil pH was a key driver of soil microbial community composition, indicating that the increase in soil pH under organic fertilizer and biochar amendment had a crucial role in biological processes. These results suggest that organic substitution and biochar amendment are beneficial in preventing soil degradation and maintaining soil multifunctionality in subtropical tea plantations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.