The aim of this series is to publish a Reference Library, including novel advances and developments in all aspects of Intelligent Systems in an easily accessible and well structured form. The series includes reference works, handbooks, compendia, textbooks, well-structured monographs, dictionaries, and encyclopedias. It contains well integrated knowledge and current information in the field of Intelligent Systems. The series covers the theory, applications, and design methods of Intelligent Systems. Virtually all disciplines such as engineering, computer science, avionics, business, e-commerce, environment, healthcare, physics and life science are included.More information about this series at
This work deals with the consequences of climate warming on aquatic ecosystems. The study determined the effects of increased water temperatures in artificial lakes during winter on predicting changes in the biomass of zooplankton taxa and their environment. We applied an innovative approach to investigate the effects of winter warming on zooplankton and physico-chemical factors. We used a modelling scheme combining hierarchical clustering, eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP) algorithms. Under the influence of increased water temperatures in winter, weight- and frequency-dominant Crustacea taxa such as Daphnia cucullata, Cyclops vicinus, Cryptocyclops bicolor, copepodites and nauplii, and the Rotifera: Polyarthra longiremis, Trichocerca pusilla, Keratella quadrata, Asplanchna priodonta and Synchaeta spp. tend to decrease their biomass. Under the same conditions, Rotifera: Lecane spp., Monommata maculata, Testudinella patina, Notholca squamula, Colurella colurus, Trichocerca intermedia and the protozoan species Centropyxis acuelata and Arcella discoides with lower size and abundance responded with an increase in biomass. Decreases in chlorophyll a, suspended solids and total nitrogen were predicted due to winter warming. Machine learning ensemble models used in innovative ways can contribute to the research utility of studies on the response of ecological units to environmental change.
Varroosis is a dangerous and difficult to diagnose disease decimating bee colonies. The studies conducted sought answers on whether the electronic nose could become an effective tool for the efficient detection of this disease by examining sealed brood samples. The prototype of a multi-sensor recorder of gaseous sensor signals with a matrix of six semiconductor gas sensors TGS 823, TGS 826, TGS 832, TGS 2600, TGS 2602, and TGS 2603 from FIGARO was tested in this area. There were 42 objects belonging to 3 classes tested: 1st class—empty chamber (13 objects), 2nd class—fragments of combs containing brood sick with varroosis (19 objects), and 3rd class—fragments of combs containing healthy sealed brood (10 objects). The examination of a single object lasted 20 min, consisting of the exposure phase (10 min) and the sensor regeneration phase (10 min). The k-th nearest neighbors algorithm (kNN)—with default settings in RSES tool—was successfully used as the basic classifier. The basis of the analysis was the sensor reading value in 270 s with baseline correction. The multi-sensor MCA-8 gas sensor signal recorder has proved to be an effective tool in distinguishing between brood suffering from varroosis and healthy brood. The five-time cross-validation 2 test (5 × CV2 test) showed a global accuracy of 0.832 and a balanced accuracy of 0.834. Positive rate of the sick brood class was 0.92. In order to check the overall effectiveness of baseline correction in the examined context, we have carried out additional series of experiments—in multiple Monte Carlo Cross Validation model—using a set of classifiers with different metrics. We have tested a few variants of the kNN method, the Naïve Bayes classifier, and the weighted voting classifier. We have verified with statistical tests the thesis that the baseline correction significantly improves the level of classification. We also confirmed that it is enough to use the TGS2603 sensor in the examined context.
The set of heuristics constituting the methods of deep learning has proved very efficient in complex problems of artificial intelligence such as pattern recognition, speech recognition, etc., solving them with better accuracy than previously applied methods. Our aim in this work has been to integrate the concept of the rough set to the repository of tools applied in deep learning in the form of rough mereological granular computing. In our previous research we have presented the high efficiency of our decision system approximation techniques (creating granular reflections of systems), which, with a large reduction in the size of the training systems, maintained the internal knowledge of the original data. The current research has led us to the question whether granular reflections of decision systems can be effectively learned by neural networks and whether the deep learning will be able to extract the knowledge from the approximated decision systems. Our results show that granulated datasets perform well when mined by deep learning tools. We have performed exemplary experiments using data from the UCI repository—Pytorch and Tensorflow libraries were used for building neural network and classification process. It turns out that deep learning method works effectively based on reduced training sets. Approximation of decision systems before neural networks learning can be important step to give the opportunity to learn in reasonable time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.