Temporal variability in ecosystems significantly impacts species diversity and ecosystem productivity and therefore the evolution of organisms. Different levels of environmental perturbations such as seasonal fluctuations, natural disasters, and global change have different impacts on organisms and therefore their ability to acclimatize and adapt. Thus, to understand how organisms evolve under different perturbations is a key for predicting how environmental change will impact species diversity and ecosystem productivity. Here, we developed a computer simulation utilizing the individual-based model approach to investigate genome size evolution of a haploid, clonal and free-living prokaryotic population across different levels of environmental perturbations. Our results show that a greater variability of the environment resulted in genomes with a larger number of genes. Environmental perturbations were more effectively buffered by populations of individuals with relatively large genomes. Unpredictable changes of the environment led to a series of population bottlenecks followed by adaptive radiations. Our model shows that the evolution of genome size is indirectly driven by the temporal variability of the environment. This complements the effects of natural selection directly acting on genome optimization. Furthermore, species that have evolved in relatively stable environments may face the greatest risk of extinction under global change as genome streamlining genetically constrains their ability to acclimatize to the new environmental conditions, unless mechanisms of genetic diversification such as horizontal gene transfer will enrich their gene pool and therefore their potential to adapt.
The efficacy of digital contact tracing against COVID-19 epidemic is debated: smartphone penetration is limited in many countries, non-uniform across age groups, with low coverage among elderly, the most vulnerable to SARS-CoV-2. We developed an agent-based model to precise the impact of digital contact tracing and household isolation on COVID-19 transmission. The model, calibrated on French population, integrates demographic, contact-survey and epidemiological information to describe the risk factors for exposure and transmission of COVID-19. We explored realistic levels of case detection, app adoption, population immunity and transmissibility. Assuming a reproductive ratio R=2.6 and 50% detection of clinical cases, a ~20% app adoption reduces peak incidence by ~35%. With R=1.7, >30% app adoption lowers the epidemic to manageable levels. Higher coverage among adults, playing a central role in COVID-19 transmission, yields an indirect benefit for elderly. These results may inform the inclusion of digital contact tracing within a COVID-19 response plan.
MHC genes, which code for proteins responsible for presenting pathogen-derived antigens to the host immune system, show remarkable copy-number variation both between and within species. However, the evolutionary forces driving this variation are poorly understood. Here, we use computer simulations to investigate whether evolution of the number of MHC variants in the genome can be shaped by the number of pathogen species the host population encounters (pathogen richness). Our model assumed that while increasing a range of pathogens recognised, expressing additional MHC variants also incurs costs such as an increased risk of autoimmunity. We found that pathogen richness selected for high MHC copy number only when the costs were low. Furthermore, the shape of the association was modified by the rate of pathogen evolution, with faster pathogen mutation rates selecting for increased host MHC copy number, but only when pathogen richness was low to moderate. Thus, taking into account factors other than pathogen richness may help explain wide variation between vertebrate species in the number of MHC genes. Within population, variation in the number of unique MHC variants carried by individuals (INV) was observed under most parameter combinations, except at low pathogen richness. This variance gave rise to positive correlations between INV and host immunocompetence (proportion of pathogens recognised). However, within-population variation in host immunocompetence declined with pathogen richness. Thus, counterintuitively, pathogens can contribute more to genetic variance for host fitness in species exposed to fewer pathogen species, with consequences to predictions from “Hamilton-Zuk” theory of sexual selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.