We compare the forecasting performance of the generalized autoregressive conditional heteroscedasticity (GARCH) -type models with support vector regression (SVR) for futures contracts of selected energy commodities: Crude oil, natural gas, heating oil, gasoil and gasoline. The GARCH models are commonly used in volatility analysis, while SVR is one of machine learning methods, which have gained attention and interest in recent years. We show that the accuracy of volatility forecasts depends substantially on the applied proxy of volatility. Our study confirms that SVR with properly determined hyperparameters can lead to lower forecasting errors than the GARCH models when the squared daily return is used as the proxy of volatility in an evaluation. Meanwhile, if we apply the Parkinson estimator which is a more accurate approximation of volatility, the results usually favor the GARCH models. Moreover, it is difficult to choose the best model among the GARCH models for all analyzed commodities, however, forecasts based on the asymmetric GARCH models are often the most accurate. While, in the class of the SVR models, the results indicate the forecasting superiority of the SVR model with the linear kernel and 15 lags, which has the lowest mean square error (MSE) and mean absolute error (MAE) among the SVR models in 92% cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.