Pharmaceutical analysis based on chromatographic separation is an important part of studies aimed at developing routine quality analysis of drugs. High-performance liquid chromatography (HPLC) is one of the main analytical techniques recommended for drug analysis. Although it meets many criteria vital for analysis, it is time-consuming and uses a relatively high amount of organic solvents compared to other analytical techniques. Recently, Ultra-high-performance liquid chromatography (UHPLC) has been frequently proposed as an alternative to HPLC, which means introducing an environment-friendly approach to drug analysis achieved by reducing the consumption of solvents. It also offers greater chromatographic resolution and higher sensitivity as well as requiring less time due to faster analysis. This review focuses on the basics of UHPLC, compares that technique with HPLC and discusses the possibilities of applying UHPLC for the analysis of different pharmaceuticals and biopharmaceuticals.
Magnesium stearate and increased relative humidity induce MOXL instability, while glyceryl behenate is an optimal lubricant, and therefore, it is recommended for moexipril-containing solid formulations. However, for the formulations containing moexipril and magnesium stearate, it is suggested to minimize the humidity level during storage.
BackgroundB-Lactam antibiotics are still the most common group of chemotherapeutic drugs that are used in the treatment of bacterial infections. However, due to their chemical instability the potential to apply them as oral pharmacotherapeutics is often limited and so it is vital to employ suitable non-destructive analytical methods. Hence, in order to analyze such labile drugs as β-lactam analogs, the application of rapid and reliable analytical techniques which do not require transferring to solutions or using organic solvents, following the current green approach to pharmaceutical analysis, is necessary. The main objective of the present research was to develop analytical methods for the evaluation of changes in meropenem in the solid state during a stability study.ResultsThe UV, FT-IR and Raman spectra of meropenem were recorded during a solid-state stability study. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated according to the density-functional theory (DFT/B3LYP method) with a 6-31G(d,p) basis set. As the differences between the observed and scaled wavenumber values were small, a detailed interpretation of the FT-IR and Raman spectra was possible for non-degraded and degraded samples of meropenem. The problem of the overlapping spectra of meropenem and ring-containing degradation products was solved by measuring changes in the values of the first-derivative amplitudes of the zero-order spectra of aqueous solutions of meropenem. Also, molecular electrostatic potential (MEP), front molecular orbitals (FMOs) and the gap potential between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were determined.ConclusionsBased on the findings of this work, it appears possible to use time-saving and reliable spectrophotometric analytical methods, supported by quantum-chemical calculations, for solid-state stability investigations of meropenem. The methods developed for this study may be considered a novel, green solution to pharmaceutical analysis of labile drugs – an alternative for the recommended chromatographic procedures.
The impact of ionizing radiation generated by a beam of electrons of 25–400 kGy on the stability of such analogs of anthracycline antibiotics as daunorubicin (DAU), doxorubicin (DOX), and epidoxorubicin (EPI) was studied. Based on EPR results, it was established that unstable free radicals decay exponentially with the half-time of 4 days in DAU and DOX and 7 days in EPI after irradiation. Radiation-induced structural changes were analyzed with the use of spectrophotometric methods (UV-Vis and IR) and electron microscope imaging (SEM). A chromatographic method (HPLC-DAD) was applied to assess changes in the contents of the analogs in the presence of their impurities. The study showed that the structures of the analogs did not demonstrate any significant alterations at the end of the period necessary for the elimination of unstable free radicals. The separation of main substances and related substances (impurities and potential degradation products) allowed determining that no statistically significant changes in the content of particular active substances occurred and that their conversion due to the presence of free radicals resulting from exposure to an irradiation of 25 kGy (prescribed to ensure sterility) was not observed.
aThe possibility of applying radiation sterilization to cefoselis sulfate was investigated. The lack of changes in the chemical structure of cefoselis sulfate irradiated with a dose of 25 kGy, required to attain sterility, was confirmed by ultraviolet, Fourier transform infrared, Raman, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction and chromatographic methods. Electron paramagnetic resonance studies showed that radiation has created some radical defects that concentration was no more than over a dozen parts per million. The antibacterial activity of cefoselis sulfate was unaltered for Gram-positive bacteria but changed for Gram-negative strains, as shown by microbiological tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.