The uterus, which plays an important role in the reproductive process, provides a home for the developing fetus and so must be in a stable, though flexible, location. Various structures with suspensory ligaments help provide this berth. MRI with high spatial resolution allows us to detect and evaluate these relatively fine structures. Under physiologic conditions, MRI can be used to depict uterine and ovarian ligaments (ie, the uterosacral, cardinal, and round ligaments, as well as the suspensory ligament of the ovary). In the presence of pathologic conditions (inflammation, endometriosis, tumors), the suspensory ligaments may appear thickened or invaded, which makes their delineation easier. Understanding the normal anatomy of the suspensory ligaments of the female genital organs and using a standardized nomenclature are essential for identifying and reporting related pathologic conditions. The female pelvic anatomy and the suspensory ligaments of the female genital organs are described as depicted with MRI. Also, the compartmental anatomy of the female pelvis is explained, including the extraperitoneal pelvic spaces. Finally, a checklist is provided for structured reporting of the MRI findings in the female pelvis.
Cerebral amyloid angiopathy-related inflammation is a new disease entity whose proper diagnosis may be difficult due to the fact that the early phase and radiological image resemble other conditions such as intracerebral haemorrhage or proliferative disorder. Also, the brain biopsy, which is an important part of the evaluation to confirm the diagnosis and rule out mimics, cannot be performed in each patient. In this paper we present the case of a 58yearold man who was correctly diagnosed with cerebral amyloid angiopathy-related inflammation (CAARI) based on the results of the histopathological examination of the brain tissue, which was possible mainly owing to the inclusion of the expansive process as the underlying cause in the initial differentiation. Further progression of the disease, despite applying treatment of increasing intensity in response to progressive deterioration of the patient's condition, revealed the multiplicity of clinical courses that a new and not easily pinpointed entity can take.
Background. In patients with SAH and multiple aneurysms, the ruptured lesion must be identified to prevent recurrent bleeding. Aim of the study. To assess the diagnostic value of non-enhanced computed tomography (NECT) in identifying the rupture site in patients with subarachnoid haemorrhage (SAH) and multiple aneurysms. Material and methods. We included patients with SAH revealed by NECT and multiple aneurysms detected on computed tomography angiography (CTA) in whom a ruptured aneurysm was identified during neurosurgery. Two radiologists predicted the location of the ruptured aneurysm based on the distribution of the SAH and location of intracerebral haematoma (ICH) by NECT. Results. Eighty-three patients with a mean age of 55.7 ± 14.4 years were included. Ruptured aneurysms were significantly larger (mean size 7.7 ± 4.7 mm) than unruptured aneurysms (mean size 5.9 ± 4.5 mm; p = 0.014). Interobserver agreement was 0.86 (p < 0.001). Overall sensitivity and specificity of radiological prediction were 78.3% (95% CI, 68.6%-87.1%) and 96.4% (95% CI, 94.3%-97.8%) respectively. Overall PPV and NPV were 78.3% (95% CI, 67.6%-86.3%) and 96.8% (95% CI, 94.8%-98.1%) respectively. The sensitivity and PPV for aneurysms in the anterior communicating, anterior, and middle cerebral arteries appeared to be significantly higher than in other locations (p = 0.015 and 0.019 respectively). Analysis of independent predictive factors of correct radiological location revealed that ICH predisposes to a correct radiological diagnosis with an odds ratio of 8.57 (95% CI, 1.07-68.99; p = 0.03). Conclusions. NECT has a high diagnostic value in identifying the source of bleeding in patients with multiple aneurysms for anterior circulation aneurysms, especially with coexisting ICH. For other locations, NECT is not reliable enough to base treatment decisions upon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.