Currently, ensuring the correct functioning of the electrical grid is an important issue in terms of maintaining the normative voltage parameters and local line overloads. The unpredictability of Renewable Energy Sources (RES), the occurrence of the phenomenon of peak demand, as well as exceeding the voltage level above the nominal values in a smart grid makes it justifiable to conduct further research in this field. The article presents the results of simulation tests and experimental laboratory tests of an electricity management system in order to reduce excessively high grid load or reduce excessively high grid voltage values resulting from increased production of prosumer RES. The research is based on the Elastic Energy Management (EEM) algorithm for smart appliances (SA) using IoT (Internet of Things) technology. The data for the algorithm was obtained from a message broker that implements the Message Queue Telemetry Transport (MQTT) protocol. The complexity of selecting power settings for SA in the EEM algorithm required the use of a solution that is applied to the NP difficult problem class. For this purpose, the Greedy Randomized Adaptive Search Procedure (GRASP) was used in the EEM algorithm. The presented results of the simulation and experiment confirmed the possibility of regulating the network voltage by the Elastic Energy Management algorithm in the event of voltage fluctuations related to excessive load or local generation.
Ensuring flexibility and security in power systems requires the use of appropriate management measures on the demand side. The article presents the results of work related to energy management in households in which renewable energy sources (RES)can be installed. The main part of the article is about the developed elastic energy management algorithm (EEM), consisting of two algorithms, EEM1 and EEM2. The EEM1 algorithm is activated in time periods with a higher energy price. Its purpose is to reduce the power consumed by the appliances to the level defined by the consumer. In contrast, the EEM2 algorithm is run by the Distribution System Operator (DSO) when peak demand occurs. Its purpose is to reduce the power of appliances in a specified time period to the level defined by the DSO. The optimization tasks in both algorithms are based on the Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic algorithm. The EEM1 and EEM2 algorithms also provide energy consumer comfort. For this purpose, both algorithms take into account the smart appliance parameters proposed in the article: sections of the working devices, power reduction levels, priorities and enablingof time shifting devices. The EEM algorithm in its operation also takes into account the information about the production of power, e.g., generated by the photovoltaic systems. On this basis, it makes decisions on the control of smart appliances. The EEM algorithm also enables inverter control to limit the power transferred from the photovoltaic system to the energy system. Such action is taken on the basis of the DSO request containing the information on the power limits. Such a structure of EEM enables the balancing of energy demand and supply. The possibility of peak demand phenomenon will be reduced. The simulation and experiment results presented in the paper confirmed the rationality and effectiveness of the EEM algorithm.
The paper presents a new elastic scheduling task model which has been used in the uniprocessor node of a control measuring system. This model allows the selection of a new set of periods for the occurrence of tasks executed in the node of a system in the case when it is necessary to perform additional aperiodic tasks or there is a need to change the time parameters of existing tasks. Selection of periods is performed by heuristic algorithms. This paper presents the results of the experimental use of an elastic scheduling model with a GRASP heuristic algorithm.
Energy management in power systems is influenced by such factors as economic and ecological aspects. Increasing the use of electricity produced at a given time from renewable energy sources (RES) by employing the elastic energy management algorithm will allow for an increase in “green energy“ in the energy sector. At the same time, it can reduce the production of electricity from fossil fuels, which is a positive economic aspect. In addition, it will reduce the volume of energy from RES that have to be stored using expensive energy storage or sent to other parts of the grid. The model parameters proposed in the elastic energy management algorithm are discussed. In particular, attention is paid to the time shift, which allows for the acceleration or the delay in the start-up of smart appliances. The actions taken by the algorithm are aimed at maintaining a compromise between the user’s comfort and the requirements of distribution network operators. Establishing the value of the time shift parameter is based on GMDH neural networks and the regression method. In the simulation studies, the extension of selected activities related to the tasks performed in households and its impact on the user’s comfort as well as the response to the increased generation of energy from renewable energy sources have been verified by the simulation research presented in this article. The widespread use of the new functionalities of smart appliance devices together with the elastic energy management algorithm is planned for the future. Such a combination of hardware and software will enable more effective energy management in smart grids, which will be part of national power systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.