Abstract. In this paper, the effectiveness of using Artificial Neural Networks (ANNs) for predicting the corrections of the Polish time scale UTC(PL) (Universal Coordinated Time) is presented. In particular, prediction results for the different types of neural networks, i.e., the MLP (MultiLayer Perceprton), the RBF (Radial Basis Function) and the GMDH (Group Method of Data Handling) are shown. The main advantages and disadvantages of using such types of neural networks are discussed. The prediction of corrections is performed using two methods: the time series analysis method and the regression method. The input data were prepared suitable for the above mentioned methods, based on two time series, ts1 and ts2. The designation of prediction errors for specified days and the influence of data quantity for the prediction error are considered. The paper consists of five sections. After Introduction, in Sec. 2, the theoretical background for different types of neural networks is presented. Section 3 shows data preparation for the appropriate type of neural network. The experimental results are presented in Sec. 4. Finally, Sec. 5 concludes the paper.
Ensuring flexibility and security in power systems requires the use of appropriate management measures on the demand side. The article presents the results of work related to energy management in households in which renewable energy sources (RES)can be installed. The main part of the article is about the developed elastic energy management algorithm (EEM), consisting of two algorithms, EEM1 and EEM2. The EEM1 algorithm is activated in time periods with a higher energy price. Its purpose is to reduce the power consumed by the appliances to the level defined by the consumer. In contrast, the EEM2 algorithm is run by the Distribution System Operator (DSO) when peak demand occurs. Its purpose is to reduce the power of appliances in a specified time period to the level defined by the DSO. The optimization tasks in both algorithms are based on the Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic algorithm. The EEM1 and EEM2 algorithms also provide energy consumer comfort. For this purpose, both algorithms take into account the smart appliance parameters proposed in the article: sections of the working devices, power reduction levels, priorities and enablingof time shifting devices. The EEM algorithm in its operation also takes into account the information about the production of power, e.g., generated by the photovoltaic systems. On this basis, it makes decisions on the control of smart appliances. The EEM algorithm also enables inverter control to limit the power transferred from the photovoltaic system to the energy system. Such action is taken on the basis of the DSO request containing the information on the power limits. Such a structure of EEM enables the balancing of energy demand and supply. The possibility of peak demand phenomenon will be reduced. The simulation and experiment results presented in the paper confirmed the rationality and effectiveness of the EEM algorithm.
The paper presents a new elastic scheduling task model which has been used in the uniprocessor node of a control measuring system. This model allows the selection of a new set of periods for the occurrence of tasks executed in the node of a system in the case when it is necessary to perform additional aperiodic tasks or there is a need to change the time parameters of existing tasks. Selection of periods is performed by heuristic algorithms. This paper presents the results of the experimental use of an elastic scheduling model with a GRASP heuristic algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.