The scattering equations on the Riemann sphere give rise to remarkable formulae for tree-level gauge theory and gravity amplitudes. Adamo, Casali and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulae, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n-gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.
Abstract:The scattering equations provide a powerful framework for the study of scattering amplitudes in a variety of theories. Their derivation from ambitwistor string theory led to proposals for formulae at one loop on a torus for 10 dimensional supergravity, and we recently showed how these can be reduced to the Riemann sphere and checked in simple cases. We also proposed analogous formulae for other theories including maximal super-Yang-Mills theory and supergravity in other dimensions at one loop. We give further details of these results and extend them in two directions. Firstly, we propose new formulae for the one-loop integrands of Yang-Mills theory and gravity in the absence of supersymmetry. These follow from the identification of the states running in the loop as expressed in the ambitwistor-string correlator. Secondly, we give a systematic proof of the non-supersymmetric formulae using the worldsheet factorisation properties of the nodal Riemann sphere underlying the scattering equations at one loop. Our formulae have the same decomposition under the recently introduced Q-cuts as one-loop integrands and hence give the correct amplitudes.
Water drops on hydrophobic microtextured materials sit on a mixture of solid and air. In standard superhydrophobic situations, the drop contacts more air than solid, so that we can think of exploiting the insulating properties of this sublayer. We show here that its presence induces a significant delay in freezing, when depositing water on cold solids. If the substrate is slightly tilted, these drops can thus be removed without freezing and without accumulating on the substrate, a property of obvious practical interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.