Strains of L. plantarum, Lactobacillus paracasei, Lactobacillus salivarius, and Lactobacillus rhamnosus expressed both high antimicrobial activity and high tolerance of environmental stress. The absence of transferable antibiotic-resistance genes in L. plantarum strains remains to be confirmed. These results suggest a potential for oral lactobacilli to be used as probiotics for oral health.
The aim of this study was to screen intestinal lactobacilli strains for their advantageous properties to select those that could be used for the development of novel gastrointestinal probiotics. Ninety-three isolates were subjected to screening procedures. Fifty-nine percent of the examined lactobacilli showed the ability to auto-aggregate, 97% tolerated a high concentration of bile (2% w/v), 50% survived for 4 h at pH 3.0, and all strains were unaffected by a high concentration of pancreatin (0.5% w/v). One Lactobacillus buchneri strain was resistant to tetracycline. None of the tested strains caused lysis of human erythrocytes. Six potential probiotic strains were selected for safety evaluation in a mouse model. Five of 6 strains caused no translocation, and were considered safe. In conclusion, several strains belonging to different species and fermentation groups were found that have properties required for a potential probiotic strain. This study was the first phase of a multi-phase study aimed to develop a novel, safe and efficient prophylactic and therapeutic treatment system against gastrointestinal infections using genetically modified probiotic lactobacilli.
The aim of the study was to evaluate the safety and persistence of selected Lactobacillus strains in the gastrointestinal tract (GIT) of healthy adult volunteers after oral consumption of high doses of lactobacilli to identify potential candidates for probiotic and biotechnological applications. In the first phase of the study, nine individuals consumed capsules containing Lactobacillus gasseri 177 and E16B7, Lactobacillus acidophilus 821-3, Lactobacillus paracasei 317 and Lactobacillus fermentum 338-1-1 (each daily dose 1×1010 cfu) for 5 consecutive days. Data on gut health, blood parameters, and liver and kidney function were collected. The persistence of Lactobacillus strains was assessed by culturing combined with arbitrarily primed polymerase chain reaction (AP-PCR) and PCR-denaturing gradient gel electrophoresis (PCR-DGGE) on days 0, 5, 8, 10 and 20 from faecal samples. All strains survived gastrointestinal passage and were detected on the 5th day. L. acidophilus 821-3 was detected in four volunteers on the 8th day (4.3 to 7.0 log10 cfu/g) and in two on the 10th day (8.3 and 3.9 log10 cfu/g, respectively). In the second phase of the study, five additional volunteers consumed L. acidophilus 821-3 (daily 1×1010 cfu) for 5 consecutive days. The strain was subsequently detected in faeces of all individuals using real-time PCR on the 10th day (range 4.6-6.7; median 6.0 log10 cell/g) in both phases of the study for at least 5 days after discontinuation of consumption. The administration of high doses of different Lactobacillus strains did not result in any severe adverse effects in GIT and/or abnormal values of blood indices. Thus, the strain L. acidophilus 821-3 is a promising candidate for probiotic and biotechnological applications. Further studies will be performed to confirm the strain persistence and safety in a larger number of individuals.
Respiratory illnesses are a significant cause of morbidity for individuals who work within concentrated animal feeding operations (CAFOs); however, most available information about CAFO aerobiology has derived from culture-based studies, which may detect only a small fraction of microbial diversity present. In this study, we characterized the identity, spatial distribution, and abundance of airborne microorganisms present in swine and dairy CAFOs using direct microscopy, broad-range rRNA PCR, and sequence analysis of air samples collected from within and nearby swine and cattle operations in the western United States. We report that indoor airborne bacterial loads were not elevated above those measured immediately outdoors. The microbial assemblage of these indoor environments was considerably more diverse than reported in previous CAFO aerosol studies. Members of bacterial genera associated with animal gut microbiota, including Bacillus spp., Clostridium spp., and Lachnospira spp., were most frequently observed. We detected no recognized, acute respiratory pathogens, but identified the common opportunistic pathogen Aerococcus viridans in several samples. Fungal species were not recovered in any of the indoor clone libraries. Specific PCR assay for porcine circovirus demonstrated that this pathogen is prevalent in the atmosphere of swine environments sampled, but was not detected in the bovine dairy facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.