Tissue engineering provides a new paradigm for periodontal tissue regeneration in which proper stem cells and effective cellular factors are very important. The objective of this study was, for the first time, to investigate the capabilities and advantages of periodontal tissue regeneration using induced pluripotent stem (iPS) cells and enamel matrix derivatives (EMD). In this study the effect of EMD gel on iPS cells in vitro was first determined, and then tissue engineering technique was performed to repair periodontal defects in three groups: silk scaffold only; silk scaffold + EMD; and silk scaffold + EMD + iPS cells. EMD greatly enhanced the mRNA expression of Runx2 but inhibited the mRNA expression of OC and mineralization nodule formation in vitro. Transplantation of iPS cells showed higher expression levels of OC, Osx, and Runx2 genes, both 12 and 24 days postsurgery. At 24 days postsurgery in the iPS cell group, histological analysis showed much more new alveolar bone and cementum formation with regenerated periodontal ligament between them. The results showed the commitment role that EMD contributes in mesenchymal progenitors to early cells in the osteogenic lineage. iPS cells combined with EMD provide a valuable tool for periodontal tissue engineering, by promoting the formation of new cementum, alveolar bone, and normal periodontal ligament.
Up to now, the gingiva-derived mesenchymal stem cells (GMSCs) as a new postnatal stem cells have been isolated and characterized with multipotential differentiation capabilities in vitro. However, the in vivo efficacy of utilizing the GMSCs in bone regeneration remains obscure. First of all, we identified canonical MSCs in human gingival tissue, which possessed homogenous immunophenotype (CD34(-)CD45(-)CD29(+)CD105(+)CD90(+) STRO-1(+)) and had tri-lineage differentiation potential (osteoblasts, adipocytes, and chondrocytes). Next, we examined the efficacy of utilizing these stem cells in bone tissue regeneration; the enhanced green fluorescent protein-labeled GMSCs seeded on type I collagen gel were implanted into the mandibular defects as well as the critical-sized calvarial defects in Sprague Dawley rats. We first demonstrated that GMSCs could repair the mandibular wounds and calvarial defects at 2 months in rats postsurgical reconstruction. Histomorphological analysis and image of fluorescence microscope certified that new bone in the defect areas was derived from the transplanted GMSCs. Immunohistochemical analysis of green fluorescent protein, human collagen I, and osteopontin further confirmed our conclusion. The above results implied that mesenchymal stem cells derived from gingival tissue could be a novel source for stem cell-based therapy in bone reconstruction in clinical applications.
Neurogenesis continues in the adult forebrain subventricular zone (SVZ) and the dentate gyrus of the hippocampal formation. Degeneration of dopaminergic projections in Parkinson's disease and animals reduces, whereas ciliary neurotrophic factor (CNTF) promotes, neurogenesis. We tested whether the dopaminergic system promotes neurogenesis through CNTF. Astrocytes of the SVZ and dentate gyrus expressed CNTF and were close to dopaminergic terminals. Dopaminergic denervation in adult mice reduced CNTF mRNA by ϳ60%, whereas systemic treatment with the D 2 agonist quinpirole increased CNTF mRNA in the SVZ and hippocampal formation, and in cultured astrocytes by 1.5-5 fold. The effect of quinpirole in vitro was blocked by the D 2 antagonist eticlopride and did not cause astroglial proliferation or hypertrophy. Systemic quinpirole injections increased proliferation in wild-type mice by ϳ25-75% but not in CNTF
The binding of TNF-α to its receptors results in the activation of multiple signaling pathways, which actively interact with each other to regulate the differentiation, proliferation, survival and apoptosis of MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.