This paper proposes a novel two-level metaheuristic algorithm, consisting of an upper-level algorithm and a lower-level algorithm, for the job-shop scheduling problem (JSP). The upper-level algorithm is a novel population-based algorithm developed to be a parameter controller for the lower-level algorithm, while the lower-level algorithm is a local search algorithm searching for an optimal schedule in the solution space of parameterized-active schedules. The lower-level algorithm’s parameters controlled by the upper-level algorithm consist of the maximum allowed length of idle time, the scheduling direction, the perturbation method to generate an initial solution, and the neighborhood structure. The proposed two-level metaheuristic algorithm, as the combination of the upper-level algorithm and the lower-level algorithm, thus can adapt itself for every single JSP instance.
This paper is a contribution to the research which aims to provide an efficient optimization algorithm for job-shop scheduling problems with multi-purpose machines or MPMJSP. To meet its objective, this paper proposes a new variant of particle swarm optimization algorithm, called GLN-PSOc, which is an extension of the standard particle swarm optimization algorithm that uses multiple social learning topologies in its evolutionary process. GLN-PSOc is a metaheuristic that can be applied to many types of optimization problems, where MPMJSP is one of these types. To apply GLN-PSOc in MPMJSP, a procedure to map the position of particle into the solution of MPMJSP is proposed. Throughout this paper, GLN-PSOc combined with this procedure is named MPMJSP-PSO. The performance of MPMJSP-PSO is evaluated on well-known benchmark instances, and the numerical results show that MPMJSP-PSO performs well in terms of solution quality and that new best known solutions were found in some instances of the test problems.
For solving the job-shop scheduling problem (JSP), this paper proposes a novel two-level metaheuristic algorithm, where its upper-level algorithm controls the input parameters of its lower-level algorithm. The lower-level algorithm is a local search algorithm searching for an optimal JSP solution within a hybrid neighborhood structure. To generate each neighbor solution, the lower-level algorithm randomly uses one of two neighbor operators by a given probability. The upper-level algorithm is a population-based search algorithm developed for controlling the five input parameters of the lower-level algorithm, i.e., a perturbation operator, a scheduling direction, an ordered pair of two neighbor operators, a probability of selecting a neighbor operator, and a start solution-representing permutation. Many operators are proposed in this paper as options for the perturbation and neighbor operators. Under the control of the upper-level algorithm, the lower-level algorithm can be evolved in its input-parameter values and neighborhood structure. Moreover, with the perturbation operator and the start solution-representing permutation controlled, the two-level metaheuristic algorithm performs like a multistart iterated local search algorithm. The experiment’s results indicated that the two-level metaheuristic algorithm outperformed its previous variant and the two other high-performing algorithms in terms of solution quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.