2009
DOI: 10.1142/s0217595909002158
|View full text |Cite
|
Sign up to set email alerts
|

A Particle Swarm Optimization Algorithm on Job-Shop Scheduling Problems With Multi-Purpose Machines

Abstract: This paper is a contribution to the research which aims to provide an efficient optimization algorithm for job-shop scheduling problems with multi-purpose machines or MPMJSP. To meet its objective, this paper proposes a new variant of particle swarm optimization algorithm, called GLN-PSOc, which is an extension of the standard particle swarm optimization algorithm that uses multiple social learning topologies in its evolutionary process. GLN-PSOc is a metaheuristic that can be applied to many types of optimiza… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
26
0
1

Year Published

2013
2013
2024
2024

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 28 publications
(27 citation statements)
references
References 13 publications
0
26
0
1
Order By: Relevance
“…Setiap partikel solusi berisi urutan susunan operasi yang harus dilakukan menggunakan mesin berdasarkan prioritasnya. Solusi optimal dihitung dari banyaknya waktu yang diperlukan untuk menyelesaikan seluruh pekerjaan yang ada [5]. Kemudian penelitian yang lain menggunakan Simulated Annealing untuk melakukan optimasi pada penjadwalan panen tebu.…”
Section: Pendahuluanunclassified
“…Setiap partikel solusi berisi urutan susunan operasi yang harus dilakukan menggunakan mesin berdasarkan prioritasnya. Solusi optimal dihitung dari banyaknya waktu yang diperlukan untuk menyelesaikan seluruh pekerjaan yang ada [5]. Kemudian penelitian yang lain menggunakan Simulated Annealing untuk melakukan optimasi pada penjadwalan panen tebu.…”
Section: Pendahuluanunclassified
“…Each individual in the swarm move towards the best solution with specific velocity and acceleration. PSO has been applied in several engineering (Jariboui et al 2007, Pongchairerks and Kachitvichyanukul 2009, Izquierdo et al 2008).…”
Section: Annex 1 Overview Of Candidate Algorithms For Sensor Networkmentioning
confidence: 99%
“…The PSO does not require continuity and differentiability on the search space of the optimization problem 44 ; thus, it has been widely used in solving many different scheduling problems for finding near-optimal solutions of complex combinatorial problems. [45][46][47] By implementing PSO, each candidate solution was encoded as a particle in the swarm. Each particle consisted of the information that the nodes selected in each layer, and the materials that were transported between the nodes.…”
Section: Solution Techniquementioning
confidence: 99%