Crocodile oil has been used worldwide for cosmetic and pharmaceutical purposes due to its essential fatty acid contents. This study aimed to investigate the best extraction method of crocodile oil extracted from abdominal adipose tissues (Crocodylus siamensis) by using four different ways. The results showed that the oil derived from the dry rendering method had lower levels of omega-3 alpha-linolenic acid (0.92 ± 0.049 g per 100 g sample) when compared to the oil extracted by using the other methods (1.16 ± 0.142, 0.96 ± 0.049, and 1.18 ± 0.010 g per 100 g sample, respectively). Interestingly, the crocodile oil extracted by wet cold pressing showed no bottom clouded sediment with a more transparent light-yellow color compared to the other oil samples. Moreover, the principle component analysis plots showed a highly positive relationship (r > 0.87) for docosahexaenoic acid (omega-3) and arachidonic acid (omega-6) in crocodile oil extracted using all methods. Therefore, it could be suggested that the modified wet cold pressing method could produce high-quality crocodile oil and could be adapted to further food and dietary supplement processing industries.
Background and Aim: Consumption of fatty acids (FA) can alter hepatic energy metabolism and mitochondrial function in the liver. Crocodile oil (CO) is rich in mono-and polyunsaturated FAs, which have natural anti-inflammatory and healing properties. In rat livers, we investigated the effect of CO on mitochondrial function for energy homeostasis. Materials and Methods: Twenty-one male Sprague-Dawley rats were divided into three groups at random. Group 1 rats were given sterile water (RO), Group 2 rats were given CO (3% v/w), and Group 3 rats were given palm oil (PO) (3% v/w). For 7 weeks, rats were given sterile water, CO, and PO orally. The researchers looked at body weight, food intake, liver weight, energy intake, blood lipid profiles, and mitochondria-targeted metabolites in the liver. The liver's histopathology, mitochondrial architecture, and hydrolase domain containing 3 (HDHD3) protein expression in liver mitochondria were studied. Results: Body weight, liver weight, liver index, dietary energy intake, and serum lipid profiles were all unaffected by CO treatment. The CO group consumed significantly less food than the RO group. The CO group also had significantly higher levels of oxaloacetate and malate than the PO group. CO treatment significantly ameliorated hepatic steatosis, as evidenced by a greater decrease in the total surface area of lipid particles than PO treatment. CO administration preserved mitochondrial morphology in the liver by upregulating the energetic maintenance protein HDHD3. Furthermore, chemical-protein interactions revealed that HDHD3 was linked to the energy homeostatic pathway. Conclusion: CO may benefit liver function by preserving hepatic mitochondrial architecture and increasing energy metabolic activity.
Gold-mining activities have been demonstrated to result in significant environmental pollution by Hg, Pb, and Mn, causing serious concerns regarding the potential threat to the public health of neighboring populations around the world. The present study focused on heavy-metal contamination in the eggs, blood, feed, soil, and drinking water on chicken farms, duck farms, and free-grazing duck farms located in areas < 25 km and > 25 km away from a gold mine in northern Thailand. In an area < 25 km away, Hg, Pb, and Mn concentrations in the eggs of free-grazing ducks were significantly higher than > 25 km away (p < 0.05). In blood, Hg concentration in free-grazing ducks was also significantly higher than those in an area > 25 km away (p < 0.05). Furthermore, the Pb concentration in the blood of farm ducks was significantly higher than in an area > 25 km away (p < 0.05). The concentration of Cd in drinking water on chicken farms was significantly higher for farms located within 25 km of the gold mine (p < 0.05). Furthermore, a high correlation was shown between the Pb (r2 = 0.84) and Cd (r2 = 0.42) found between drinking water and blood in free-grazing ducks in the area < 25 km away. Therefore, health risk from heavy-metal contamination was inevitably avoided in free-grazing activity near the gold mine. The incremental lifetime cancer risk (ILCR) in the population of both Pb and Cd exceeded the cancer limit (10−4) for all age groups in both areas, which was particularly high in the area < 25 km for chicken-egg consumption, especially among people aged 13–18 and 18–35 years old. Based on these findings, long-term surveillance regarding human and animal health risk must be strictly operated through food chains and an appropriate control plan for poultry businesses roaming around the gold mine.
Staphylococcus epidermidis is a major nosocomial pathogen that frequently forms biofilms on indwelling medical devices. This study aimed to investigate the synergistic antimicrobial and antibiofilm activities of octyl gallate (OG) in combination with penicillin and bacitracin against S. epidermidis. Antimicrobial synergy was assessed by conducting checkerboard titration assays, and antibiofilm activity was determined with biofilm assays and fluorescence microscopy analysis. The presence of 8 µg/mL of OG increased both the bacteriostatic and bactericidal activities of penicillin and bacitracin against S. epidermidis. It lowered the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of penicillin by eight-fold and those of bacitracin by four-fold. Moreover, when used with penicillin or bacitracin, OG significantly decreased the level of biofilm production by preventing microcolony formation. Furthermore, OG significantly permeabilized the bacterial cell wall, which may explain its antimicrobial synergy with penicillin and bacitracin. Together, these results demonstrate that OG, a food-grade antioxidant, can be potentially used as a drug potentiator to enhance the antimicrobial and antibiofilm activities of penicillin and bacitracin against S. epidermidis.
Background: Dietary fat composition is a potential major factor affecting energy metabolism. Crocodile oil (CO) is rich in mono- and poly-unsaturated fatty acids exhibiting anti-inflammatory and healing properties. Aim: This study investigated different levels of CO consumption on alterations and expression of proteins involved in energy metabolism in rats. Methods: Twenty-one male Sprague-Dawley rats were divided into three groups and administered sterile water (N) or different doses of CO (1% or 3% [v/w] CO) orally once daily for 8 weeks. Body weight gain, food intake, energy intake, blood lipid profiles, and serum energy-related metabolites were determined. The serum proteome was analyzed using shotgun proteomics, and the functions of several candidate proteins were classified using PANTHER software. Results: There were no significant differences in body weight or energy intake were observed between groups. However, both CO-treated groups showed significantly decreased serum triglyceride (TG) levels (p<0.05). Moreover, post-treatment serum TG levels in the 1% CO group were significantly lower than pre-treatment compared with other groups. The serum oxaloacetate level was also significantly higher in both CO groups than in the N group. The proteomic analysis classified 4,525 serum proteins and revealed more unique proteins involved in cellular metabolic activity in both CO-treated groups than in the N group. Self-organizing tree algorithm clustering of 295 shared differentially expressed proteins in both CO-treatment groups showed that upregulated hyper-expressed protein clusters in both CO groups were associated with catalytic activity and molecular activity on the same levels. Conclusion: CO simultaneously enhances energy metabolism and improves lipid profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.