BackgroundMalaria is rampant in Africa and causes untold mortality and morbidity. Vector-borne diseases are climate sensitive and this has raised considerable concern over the implications of climate change on future disease risk. The problem of malaria vectors (Anopheles mosquitoes) shifting from their traditional locations to invade new zones is an important concern. The vision of this study was to exploit the sets of information previously generated by entomologists, e.g. on geographical range of vectors and malaria distribution, to build models that will enable prediction and mapping the potential redistribution of Anopheles mosquitoes in Africa.MethodsThe development of the modelling tool was carried out through calibration of CLIMEX parameters. The model helped estimate the potential geographical distribution and seasonal abundance of the species in relation to climatic factors. These included temperature, rainfall and relative humidity, which characterized the living environment for Anopheles mosquitoes. The same parameters were used in determining the ecoclimatic index (EI). The EI values were exported to a GIS package for special analysis and proper mapping of the potential future distribution of Anopheles gambiae and Anophles arabiensis within the African continent under three climate change scenarios.ResultsThese results have shown that shifts in these species boundaries southward and eastward of Africa may occur rather than jumps into quite different climatic environments. In the absence of adequate control, these predictions are crucial in understanding the possible future geographical range of the vectors and the disease, which could facilitate planning for various adaptation options.ConclusionThus, the outputs from this study will be helpful at various levels of decision making, for example, in setting up of an early warning and sustainable strategies for climate change and climate change adaptation for malaria vectors control programmes in Africa.
Cholera epidemics have a recorded history in the eastern Africa region dating to 1836. Cholera is now endemic in the Lake Victoria basin, a region with one of the poorest and fastest growing populations in the world. Analyses of precipitation, temperatures, and hydrological characteristics of selected stations in the Lake Victoria basin show that cholera epidemics are closely associated with El Niño years. Similarly, sustained temperatures high above normal (T(max)) in two consecutive seasons, followed by a slight cooling in the second season, trigger an outbreak of a cholera epidemic. The health and socioeconomic systems that the lake basin communities rely upon are not robust enough to cope with cholera outbreaks, thus rendering them vulnerable to the impact of climate variability and change. Collectively, this report argues that communities living around the Lake Victoria basin are vulnerable to climate-induced cholera that is aggravated by the low socioeconomic status and lack of an adequate health care system. In assessing the communities' adaptive capacity, the report concludes that persistent levels of poverty have made these communities vulnerable to cholera epidemics.
Endemic malaria in most of the hot and humid African climates is the leading cause of morbidity and mortality. In the last twenty or so years the incidence of malaria has been aggravated by the resurgence of highland malaria epidemics which hitherto had been rare. A close association between malaria epidemics and climate variability has been reported but not universally accepted. Similarly, the relationship between climate variability, intensity of disease mortality and morbidity coupled with socio-economic factors has been mooted. Analyses of past climate (temperature and precipitation), hydrological and health data , and socio-economics status of communities from the East African highlands confirm the link between climate variability and the incidence and severity of malaria epidemics. The communities in the highlands that have had less exposure to malaria are more vulnerable than their counterparts in the lowlands due to lack of clinical immunity. However, the vulnerability of human health to climate variability is influenced by the coping and adaptive capacities of an individual or community. Surveys conducted among three communities in the East African highlands reveal that the interplay of poverty and other socio-economic variables have intensified the vulnerability of these communities to the impacts of malaria.
For seven years, village-based recorders monitored fish catches and water levels in seven floodplainassociated lakes of the Lower Rufiji, Tanzania. The lakes differ in the number of days and volume of inflows from the river, and thus provide a natural experiment to explore the links between catch composition, income per hour of fishing (IPHF) and hydrological connectivity, and to analyse the response of the users. The fishers adapt their fishing mode and equipment to achieve a rather constant IPHF of between 0.2 and 0.8 US$/fisher/hour. In situations of low connectivity, during a series of drought years, the less well-connected lakes lost many species and became a virtual monoculture of Oreochromis urolepis. Only in one extreme case was average fish size significantly reduced, indicating a high fishing pressure. Catch was therefore highly resilient to shifts toward illegal, non-selective and active fishing techniques. Fish diversity and lake productivity were quickly re-established when the larger lakes reconnected. The potential impacts of changes in the flood hydrograph (through dams, increased abstraction or climate/land-use changes) are assessed, and management options discussed. La taille moyenne des poissons a été significativement réduite dans un seul cas extrême, montrant ainsi la forte résilience des captures au changement vers des engins de pêche illégaux et non sélectifs et aux techniques de pêche active. La diversité halieutique et la productivité des lacs sont rapidement restaurées quand les plus grands lacs se reconnectent. Les impacts potentiels de modifications de l'hydrogramme de crue (par des barrages, des prélèvements additionnels et des changements climatiques/changements de l'utilisation des sols) sont évalués et des options de gestion sont évoquées.
Climate change impacts food production systems, particularly in locations with large, vulnerable populations. Elevated greenhouse gases (GHG), as well as land cover/land use change (LCLUC), can influence regional climate dynamics. Biophysical factors such as topography, soil type, and seasonal rainfall can strongly affect crop yields. We used a regional climate model derived from the Regional Atmospheric Modeling System (RAMS) to compare the effects of projected future GHG and future LCLUC on spatial variability of crop yields in East Africa. 824 Climatic Change (2012) 110:823-844 Crop yields were estimated with a process-based simulation model. The results suggest that: (1) GHG-influenced and LCLUC-influenced yield changes are highly heterogeneous across this region; (2) LCLUC effects are significant drivers of yield change; and (3) high spatial variability in yield is indicated for several key agricultural sub-regions of East Africa. Food production risk when considered at the household scale is largely dependent on the occurrence of extremes, so mean yield in some cases may be an incomplete predictor of risk. The broad range of projected crop yields reflects enormous variability in key parameters that underlie regional food security; hence, donor institutions' strategies and investments might benefit from considering the spatial distribution around mean impacts for a given region. Ultimately, global assessments of food security risk would benefit from including regional and local assessments of climate impacts on food production. This may be less of a consideration in other regions. This study supports the concept that LCLUC is a first-order factor in assessing food production risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.