The duration of Ag expression in vivo has been reported to have a minimal impact on both the magnitude and kinetics of contraction of a pathogen-induced CD8+ T cell response. In this study, we controlled the duration of Ag expression by excising the ear pinnae following intradermal ear pinnae DNA immunization. This resulted in decreased magnitude, accelerated contraction and differentiation, and surprisingly greater secondary CD8+ T cell responses. Furthermore, we found delayed and prolonged Ag presentation in the immunized mice; however, this presentation was considerably decreased when the depot Ag was eliminated. These findings suggest that the magnitude and the contraction phase of the CD8+ T cell response following intradermal DNA immunization is regulated by the duration rather than the initial exposure to Ag.
The Esigma70-dependent N25 promoter is rate-limited at promoter escape. Here, RNA polymerase repeatedly initiates and aborts transcription, giving rise to a ladder of short RNAs 2-11 nucleotides long. Certain mutations in the initial transcribed sequence (ITS) of N25 lengthen the abortive initiation program, resulting in the release of very long abortive transcripts (VLATs) 16-19 nucleotides long. This phenomenon is completely dependent on sequences within the first 20 bases of the ITS since altering sequences downstream of +20 has no effect on their formation. VLAT formation also requires strong interactions between RNA polymerase and the promoter. Mutations that change the -35 and -10 hexamers and the intervening 17 base pair spacer away from consensus decrease the probability of aborting at positions +16 to +19. An unusual characteristic of the VLATs is their undiminished levels in the presence of GreB, which rescues abortive RNAs (=15 nucleotides) associated with backtracked initial transcribing complexes. This suggests that VLATs are produced via a mechanism distinct from backtracking, which we propose entails polymerase molecules hyper forward translocating during the promoter escape transition. We discuss how certain features in the ITS, when combined with the N25 promoter, may lead to hyper forward translocation and abortive release at VLAT positions.
Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01+ female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8+ T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4+ and CD8+ T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4+ T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.
Because it is thought that mucosal tissues play a fundamental role in early HIV/SIV infection, it is crucial to understand the virus-specific responses in mucosal tissues to facilitate devising strategies to prevent and control these infections. We have employed TCR repertoire analyses to define the clonal composition of a dominant SIV epitope-specific CD8(+) T cell population in mucosal and systemic compartments of SIV-infected rhesus monkeys during both acute and chronic infection. We show that the CD8(+) T cell repertoire in mucosal tissues of uninfected rhesus monkeys is oligoclonal, whereas the CD8(+) T cell repertoire in blood is polyclonal. Early postinfection, the SIV-specific CD8(+) T cell clonal repertoire is distinct in mucosal compartments and peripheral blood. However, we observed a narrowing of the virus-specific CD8(+) T cell clonal repertoire in all sampled anatomic compartments as infection progressed from acute to chronic, and there was comparable clonal diversity in all anatomic compartments. We showed during chronic infection that the same clonal populations of virus-specific CD8(+) T cells are present in all compartments. These data indicate that the SIV-specific CD8(+) T cells in systemic and mucosal sites have a shared clonal origin and are, therefore, capable of both responding to infection in the systemic circulation and trafficking to mucosal tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.