Abstract-We present the design and evaluation of FI3D, a direct-touch data exploration technique for 3D visualization spaces. The exploration of three-dimensional data is core to many tasks and domains involving scientific visualizations. Thus, effective data navigation techniques are essential to enable comprehension, understanding, and analysis of the information space. While evidence exists that touch can provide higher-bandwidth input, somesthetic information that is valuable when interacting with virtual worlds, and awareness when working in collaboration, scientific data exploration in 3D poses unique challenges to the development of effective data manipulations. We present a technique that provides touch interaction with 3D scientific data spaces in 7 DOF. This interaction does not require the presence of dedicated objects to constrain the mapping, a design decision important for many scientific datasets such as particle simulations in astronomy or physics. We report on an evaluation that compares the technique to conventional mouse-based interaction. Our results show that touch interaction is competitive in interaction speed for translation and integrated interaction, is easy to learn and use, and is preferred for exploration and wayfinding tasks. To further explore the applicability of our basic technique for other types of scientific visualizations we present a second case study, adjusting the interaction to the illustrative visualization of fiber tracts of the brain and the manipulation of cutting planes in this context.
We present an interactive illustrative visualization method inspired by traditional pen-and-ink illustration styles. Specifically, we explore how to provide context around DTI fiber tracts in the form of surfaces of the brain, the skull, or other objects such as tumors. These contextual surfaces are derived from either segmentation data or generated using interactive iso-surface extraction and are rendered with a flexible, slice-based hatching technique, controlled with ambient occlusion. This technique allows us to produce a consistent and frame-coherent appearance with precise control over the lines. In addition, we provide context through cutting planes onto which we render gray matter with stippling. Together, our methods not only facilitate the interactive exploration and illustration of brain fibers within their anatomical context but also allow us to produce high-quality images for print reproduction. We provide evidence for the success of our approach with an informal evaluation with domain experts.
This article discusses the use of 3D technologies in digital earth applications (DEAs) to study complex sites. These are large areas containing objects with heterogeneous shapes and semantic information. The study proposes that DEAs should be modular, have multi-tier architectures, and be developed as Free and Open Source Software if possible. In DEAs requiring high reliability in the 3D measurements, point clouds are proposed as basis for the 3D Digital digital earth representation. For the development of DEAs, we propose to follow a workflow with four components: data acquisition and processing, data management, data analysis and data visualization. For every component, technological challenges of using 3D technologies are identified and solutions applied for a case study are presented. The case study is a modular 3D DEA developed for the archaeological project Mapping the Via Appia. The 3D DEA allows archaeologists to virtually analyze a complex study area. ARTICLE HISTORY
Accessibility to zooarchaeological reference materials is a key hurdle when determining species classification, particularly in cases where the differences between two species (e.g. sheep and goat) are nuanced. Bonify is a pilot platform allowing the virtual comparison between 3D virtual animal bone models and zooarchaeological specimens. Two technologies were case studied, online web presentation and augmented reality. The two methodologies were tested by a selection of students and domain professionals. While the physical reference collection was viewed as the most usable, it was limited in terms of accessibility; the second best option turned out to be the web based interface while the augmented reality option suffered in terms of its usability. The web interface is available at www.digitalbones.eu.
For doctors and other medical professionals, the human body is the focus of their daily practice. A solid understanding of how it is built up, that is, the anatomy of the human body, is essential to ensure safe medical practice. Current anatomy education takes place either using text books or via dissecting human cadavers, with text books being the most traditional way to learn anatomy due to the cost of the alternatives. However, printed media offer only a 2D perception of a part of the human body. Although dissection of human cadavers can give a more direct observation and interaction with human bodies, it is extremely costly because of the need of preserving human bodies and maintaining dissection rooms. To solve this issue, we developed VeLight, a system with which students can learn anatomy based on CT datasets using a 3D Virtual Reality display (zSpace). VeLight offers simple and intuitive interactions, and allows teachers to design their own courses using their own material. The system offers an interactive, depth-perceptive learning experience and improves the learning process. We conducted an informal user study to validate the effectiveness of VeLight. The results show that participants were able to learn and remember how to work with VeLight very quickly. All participants reported enthusiasm for the potential of VeLight in the domain of medical education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.