IntroductionChronic exposure to high levels of ozone induces emphysema and chronic inflammation in mice. We determined the recovery from ozone-induced injury and whether an antioxidant, N-acetylcysteine (NAC), could prevent or reverse the lung damage.MethodsMice were exposed to ozone (2.5 ppm, 3 hours/12 exposures, over 6 weeks) and studied 24 hours (24h) or 6 weeks (6W) later. Nac (100 mg/kg, intraperitoneally) was administered either before each exposure (preventive) or after completion of exposure (therapeutic) for 6 weeks.ResultsAfter ozone exposure, there was an increase in functional residual capacity, total lung volume, and lung compliance, and a reduction in the ratio of forced expiratory volume at 25 and 50 milliseconds to forced vital capacity (FEV25/FVC, FEV50/FVC). Mean linear intercept (Lm) and airway hyperresponsiveness (AHR) to acetylcholine increased, and remained unchanged at 6W after cessation of exposure. Preventive NAC reduced the number of BAL macrophages and airway smooth muscle (ASM) mass. Therapeutic NAC reversed AHR, and reduced ASM mass and apoptotic cells.ConclusionEmphysema and lung function changes were irreversible up to 6W after cessation of ozone exposure, and were not reversed by NAC. The beneficial effects of therapeutic NAC may be restricted to the ASM.
Glucocorticoid insensitivity presents a profound management problem in patients with asthma because conventional therapies are not effective. Glucocorticoids, acting through the glucocorticoid receptor (GR), are able to selectively repress inflammatory gene expression by utilizing several distinct mechanisms targeting nuclear factor-varphiB and activator protein-1 activation complexes and by effects on mitogen-activated protein kinases. Different model systems often activate distinct sets of signaling molecules and different glucocorticoid responsiveness may result from differences in concentrations and timing of steroid treatment of cells, GR expression levels, and the precise inflammatory stimulus used. Thus, abnormal activation of many signaling pathways may affect corticosteroid responsiveness in patients with corticosteroid-resistant asthma. Understanding the molecular mechanisms of GR action and inaction may lead to the development of new anti-inflammatory drugs or enable clinicians to reverse the relative steroid-insensitivity that is characteristic of some patients with severe asthma.
We determined the role of p38 mitogen-activated protein kinase (MAPK) in the increased airway smooth muscle (ASM) contractile responses following ozone and modulation by corticosteroids.Mice were exposed to air or ozone (3 ppm for 3 h) and isometric contractile responses of bronchial rings to acetylcholine (ACh) were measured using a myograph in the presence of p38 MAPK inhibitor, SB239063 (10 -6 M) or dexamethasone (10 -6 M). Because MAPK phosphatase (MKP)-1 is a negative regulator of p38 MAPK, we also studied these effects in MKP-1 -/-mice.Bronchial rings from ozone-exposed wild-type and MKP-1 -/-mice showed increased contractile responses, with a leftward shift of the dose-response curve in MKP-1 -/-mice. SB239063 inhibited bronchial contraction equally in air-and ozone-exposed C57/BL6 and MKP-1 -/-mice.Dexamethasone inhibited ACh-induced bronchial contraction in both air-and ozone-exposed C57/BL6 mice, but not in air-or ozone-exposed MKP-1 -/-mice. ACh-stimulated p38 MAPK and heat shock protein (HSP)27 phosphorylation, as measured by Western blotting, and this effect was suppressed by SB239063 in C57/BL6 and MKP-1 -/-mice, but not by dexamethasone in either airor ozone-exposed MKP-1 -/-mice.p38 MAPK plays a role in maximal ACh-induced isometric contractile responses and increased contractility induced by ozone. Dexamethasone inhibits ACh-induced ASM contraction through phosphorylation of p38 MAPK and HSP27. KEYWORDS: Acetylcholine, airway smooth muscle, dexamethasone, heat shock protein 27, p38 mitogen-activated protein kinase, mitogen-activated protein kinase phosphatase-1
The reduced LLMI in mild/moderate asthma may be related to lower incidence of GORD. However, this was not related to the degree of airflow obstruction, obesity or airway inflammation.
Background Patients with severe asthma may have a greater risk of dying from COVID-19 disease. Angiotensin converting enzyme-2 (ACE2) and the enzyme proteases, transmembrane protease serine 2 (TMPRSS2) and FURIN, are needed for viral attachment and invasion into host cells. Methods We examined microarray mRNA expression of ACE2, TMPRSS2 and FURIN in sputum, bronchial brushing and bronchial biopsies of the European U-BIOPRED cohort. Clinical parameters and molecular phenotypes, including asthma severity, sputum inflammatory cells, lung functions, oral corticosteroid (OCS) use, and transcriptomic-associated clusters, were examined in relation to gene expression levels. Results ACE2 levels were significantly increased in sputum of severe asthma compared to mild-moderate asthma. In multivariate analyses, sputum ACE2 levels were positively associated with OCS use and male gender. Sputum FURIN levels were significantly related to neutrophils (%) and the presence of severe asthma. In bronchial brushing samples, TMPRSS2 levels were positively associated with male gender and body mass index, whereas FURIN levels with male gender and blood neutrophils. In bronchial biopsies, TMPRSS2 levels were positively related to blood neutrophils. The neutrophilic molecular phenotype characterised by high inflammasome activation expressed significantly higher FURIN levels in sputum than the eosinophilic Type 2-high or the pauci-granulocytic oxidative phosphorylation phenotypes. Conclusion Levels of ACE2 and FURIN may differ by clinical or molecular phenotypes of asthma. Sputum FURIN expression levels were strongly associated with neutrophilic inflammation and with inflammasome activation. This might indicate the potential for a greater morbidity and mortality outcome from SARS-CoV-2 infection in neutrophilic severe asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.