Taurine is an inhibitory neurotransmitter and is one of the most abundant amino acids present in the mammalian nervous system. Taurine has been shown to provide protection against neurological diseases, such as Huntington's disease, Alzheimer's disease, and stroke. Ischemic stroke is one of the leading causes of death and disability in the world. It is generally believed that ischemia-induced brain injury is largely due to excessive release of glutamate resulting in excitotoxicity and cell death. Despite extensive research, there are still no effective interventions for stroke. Recently, we have shown that taurine can provide effective protection against endoplasmic reticulum (ER) stress induced by excitotoxicity or oxidative stress in PC12 cell line or primary neuronal cell cultures. In this study, we employed hypoxia/reoxygenation conditions for primary cortical neuronal cell cultures as an in vitro model of stroke as well as the in vivo model of rat focal middle cerebral artery occlusion (MCAO). Our data showed that when primary neuronal cultures were first subjected to hypoxic conditions (0.3%, 24 h) followed by reoxygenation (21%, 24-48 h), the cell viability was greatly reduced. In the animal model of stroke (MCAO), we found that 2 h ischemia followed by 4 days reperfusion resulted in an infarct of 47.42 ± 9.86% in sections 6 mm from the frontal pole. Using taurine greatly increased cell viability in primary neuronal cell culture and decreased the infarct area of sections at 6 mm to 26.76 ± 6.91% in the MCAO model. Furthermore, levels of the ER stress protein markers GRP78, caspase-12, CHOP, and p-IRE-1 which were markedly increased in both the in vitro and in vivo models significantly declined after taurine administration, suggesting that taurine may exert neuroprotection functions in both models. Moreover, taurine could downregulate the ratio of cleaved ATF6 and full-length ATF6 in both models. In the animal model of stroke, taurine induced an upregulation of the Bcl-2/Bax ratio and downregulation of caspase-3 protein activity indicating that it attenuates apoptosis in the core of the ischemic infarct. Our results show not only taurine elicits neuroprotection through the activation of the ATF6 and the IRE1 pathways, but also it can reduce apoptosis in these models.
Sleep disorders are frequently seen in patients with Parkinson disease (PD), including rapid eye movement (REM) behavior disorder and periodic limb movement disorder. However, knowledge about changes in non-REM sleep in patients with PD is limited. This study explored the characteristics of electroencephalography (EEG) during sleep in patients with PD and non-PD controls. We further conducted multiscale entropy (MSE) analysis to evaluate and compare the complexity of sleep EEG for the 2 groups. There were 9 patients with PD (Hoehn-Yahr stage 1 or 2) and 11 non-PD controls. All participants underwent standard whole-night polysomnography (PSG), which included 23 channels, 6 of which were for EEG. The raw data of the EEG were extracted and subjected to MSE analysis. Patients with PD had a longer sleep onset time and a higher spontaneous EEG arousal index. Sleep stage-specific increased MSE was observed in patients with PD during non-REM sleep. The difference was more marked and significant at higher time scale factors (TSFs). In conclusion, increased biosignal complexity, as revealed by MSE analysis, was found in patients with PD during non-REM sleep at high TSFs. This finding might reflect a compensatory mechanism for early defects in neuronal network control machinery in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.