Changes in the interactions among proteins that participate in a biochemical pathway can reflect the immediate regulatory responses to intrinsic or extrinsic perturbations of the pathway. Thus, methods that allow for the direct detection of the dynamics of protein-protein interactions can be used to probe the effects of any perturbation on any pathway of interest. Here we describe experimental strategies - based on protein-fragment complementation assays (PCAs) - that can achieve this. PCA-based strategies can be used with or instead of traditional target-based drug discovery strategies to identify novel pathway-component proteins of therapeutic interest, to increase the quantity and quality of information about the actions of potential drugs, and to gain insight into the intricate networks that make up the molecular machinery of living cells.
Highlights d Postpartum liver circulates NAD metabolites to increase mammary NAD + and NADP + >20-fold d NR supplementation superinduces prolactin, mammary biosynthetic programs, and lactation d Weanlings of NR-fed mothers are hypoglycemia resistant and advanced in motor learning d Adult offspring of NR-fed mothers retain striking physical and behavioral advantages
G-protein-coupled receptors sense extracellular chemical or physical stimuli and transmit these signals to distinct trimeric G-proteins. Activated Gα-proteins route signals to interconnected effector cascades, thus regulating thresholds, amplitudes and durations of signalling. Gαs- or Gαi-coupled receptor cascades are mechanistically conserved and mediate many sensory processes, including synaptic transmission, cell proliferation and chemotaxis. Here we show that a central, conserved component of Gαs-coupled receptor cascades, the regulatory subunit type-II (RII) of protein kinase A undergoes adenosine 3′-5′-cyclic monophosphate (cAMP)-dependent binding to Gαi. Stimulation of a mammalian Gαi-coupled receptor and concomitant cAMP-RII binding to Gαi, augments the sensitivity, amplitude and duration of Gαi:βγ activity and downstream mitogen-activated protein kinase signalling, independent of protein kinase A kinase activity. The mechanism is conserved in budding yeast, causing nutrient-dependent modulation of a pheromone response. These findings suggest a direct mechanism by which coincident activation of Gαs-coupled receptors controls the precision of adaptive responses of activated Gαi-coupled receptor cascades.
◥Purpose: Pancreatic neuroendocrine tumors (pNETs) are uncommon malignancies noted for their propensity to metastasize and comparatively favorable prognosis. Although both the treatment options and clinical outcomes have improved in the past decades, most patients will die of metastatic disease. New systemic therapies are needed.Experimental Design: Tissues were obtained from 43 patients with well-differentiated pNETs undergoing surgery. Gene expression was compared between primary tumors versus liver and lymph node metastases using RNA-Seq. Genes that were selectively elevated at only one metastatic site were filtered out to reduce tissue-specific effects. Ingenuity pathway analysis (IPA) and the Connectivity Map (CMap) identified drugs likely to antagonize metastasis-specific targets. The biological activity of top identified agents was tested in vitro using two pNET cell lines (BON-1 and QGP-1).Results: A total of 902 genes were differentially expressed in pNET metastases compared with primary tumors, 626 of which remained in the common metastatic profile after filtering. Analysis with IPA and CMap revealed altered activity of factors involved in survival and proliferation, and identified drugs targeting those pathways, including inhibitors of mTOR, PI3K, MEK, TOP2A, protein kinase C, NF-kB, cyclin-dependent kinase, and histone deacetylase. Inhibitors of MEK and TOP2A were consistently the most active compounds.Conclusions: We employed a complementary bioinformatics approach to identify novel therapeutics for pNETs by analyzing gene expression in metastatic tumors. The potential utility of these drugs was confirmed by in vitro cytotoxicity assays, suggesting drugs targeting MEK and TOP2A may be highly efficacious against metastatic pNETs. This is a promising strategy for discovering more effective treatments for patients with pNETs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.