D-limonene in water nanoemulsion was prepared by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether. Investigation using response surface methodology revealed that 10% d-limonene nanoemulsions formed at S0 ratio (D-limonene concentration to mixed surfactant concentration) 0.6-0.7 and applied power 18 W for 120 s had droplet size below 100 nm. The zeta potential of the nanoemulsion was approximately -20 mV at original pH 6.4, closed to zero around pH 4.0, and around -30 mV at pH 12.0. The main destabilization mechanism of the systems is Ostwald ripening. The ripening rate at 25 °C (0.39 m3 s(-1)×10(29)) was lower than that at 4 °C (1.44 m3 s(-1)×10(29)), which was in agreement with the Lifshitz-Slezov-Wagner (LSW) theory. Despite of Ostwald ripening, the droplet size of d-limonene nanoemulsion remained stable after 8 weeks of storage.
Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared D-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic-lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were D-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of D-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of D-limonene in the skin was 40.11 μL/cm(2) at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the D-limonene nanoemulsion may be a safe carrier for transdermal drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.