Background: Studies of most-cited articles have been frequently conducted on various topics and in various medical fields. To date, no study has examined the characteristics of articles associated with theme classifications and research achievements of article entities related to nursing resilience. This study aims to graphically depict the characteristics of the 100 top-cited articles addressing nurse resilience (T100NurseR), diagram the relationship between articles and author collaborations according to themes extracted from article keywords, and examine whether article keywords are correlated with article citations. Methods: T100NurseR publications were retrieved from the Web of Science (WoS) core collection on October 13, 2022. Themes associated with articles were explored using coword analysis in WoS keywords plus. The document category, journal ranking based on impact factor, authorship, and L-index and Y-index were used to analyze the dominant entities. To report the themes of T100NurseR and their research achievements in comparison to article entities and verify the hypothesis that keyword mean citation can be used to predict article citations, 5 visualizations were applied, including network diagrams, chord diagrams, dot plots, Kano diagrams, and radar plots. Results: Citations per article averaged 61.96 (range, 25–514). There were 5 themes identified in T100NurseR, including Parses theory, nurse resilience, conflict management, nursing identity, and emotional intelligence. For countries, institutes, departments, and authors in comparison of category, journal impact factor, authorship, and L-index scores, Australia (129.80), the University of Western Sydney (23.12), Nursing (87.17), and Kim Foster (23.76) are the dominant entities. The weighted number of citations according to Keywords Plus in WoS is significantly correlated with article citations (Pearson R = 0.94; P = .001). Conclusion: We present diagrams to guide evidence-based clinical decision-making in nurse resilience based on the characteristics of the T100NurseR articles. Article citations can be predicted using weighted keywords. Future bibliographical studies may apply the 5 visualizations to relevant studies, not being solely restricted to T100NurseR.
BACKGROUND Workplace bullying has been measured in many studies to investigate its effects on mental health issues. However, none have used web-based computerized adaptive testing (CAT) with bully classifications and convolutional neural networks (CNN) for reporting the extent of individual bullying in the workplace. OBJECTIVE This study aims to build a model using CNN to develop an app for automatic detection and classification of nurse bullying-levels, incorporated with online Rasch computerized adaptive testing, to help assess nurse bullying at an earlier stage. METHODS We recruited 960 nurses working in a Taiwan Ch-Mei hospital group to fill out the 22-item Negative Acts Questionnaire-Revised (NAQ-R) in August 2012. The k-mean and the CNN were used as unsupervised and supervised learnings, respectively, for: (1) dividing nurses into three classes (n=918, 29, and 13 with suspicious mild, moderate, and severe extent of being bullied, respectively); and (2) building a bully prediction model to estimate 69 different parameters. Finally, data were separated into training and testing sets in a proportion of 70:30, where the former was used to predict the latter. We calculated the sensitivity, specificity, and receiver operating characteristic curve (area under the curve [AUC]), along with the accuracy across studies for comparison. An app predicting the respondent bullying-level was developed, involving the model’s 69 estimated parameters and the online Rasch CAT module as a website assessment. RESULTS We observed that: (1) the 22-item model yields higher accuracy rates for three categories, with an accuracy of 94% for the total 960 cases, and accuracies of 99% (AUC 0.99; 95% CI 0.99-1.00) and 83% (AUC 0.94; 95% CI 0.82-0.99) for the lower and upper groups (cutoff points at 49 and 66 points) based on the 947 cases and 42 cases, respectively; and (2) the 700-case training set, with 95% accuracy, predicts the 260-case testing set reaching an accuracy of 97. Thus, a NAQ-R app for nurses that predicts bullying-level was successfully developed and demonstrated in this study. CONCLUSIONS The 22-item CNN model, combined with the Rasch online CAT, is recommended for improving the accuracy of the nurse NAQ-R assessment. An app developed for helping nurses self-assess workplace bullying at an early stage is required for application in the future.
BACKGROUND Cardiovascular disease (CVD) causes approximately half of all deaths in patients with type 2 diabetes. Duplicative prescriptions (DP) of medication in patients with high blood pressure (hypertension), high blood sugar (hyperglycemia), and high blood lipids have attracted close attention in relation to the abuse of healthcare resources and preventive measures for such abuse. DP may occur through duplicative prescriptions by which patients receive redundant medications for the same condition from two or more sources such as doctors, hospitals, and multiple providers, or as a result of the patient’s wandering. OBJECTIVE We evaluated the degree of DP in Taiwanese hospitals for outpatients with the three types of redundant medications, and then used an online dashboard using mHealth on Google Maps to determine whether the situation has improved in the recent 25 fiscal quarters. METHODS Data on duplicate prescription rates of drugs for the aforementioned diseases from the third quarter of 2010 to the third quarter of 2016 were downloaded from the website of Taiwan’s National Health Insurance Administration (TNHIA). For the three types of drugs, 408, 414, and 359 hospitals with complete data were included in the study. We used scale quality indicators to (1) assess the attributes of the study data using scale quality indicators, (2) create a dashboard that can be traced using mHealth, and (3) select the hospital levels that perform better in performance improvement on the three types of drugs using the weighted scores across types of hospital and percentages of performance on Google Maps. We used Kendall’s coefficient of concordance (W) to evaluate whether the performance rankings are unanimous. RESULTS We found that (1) data quality is acceptable and effectively shows reliability and construct validity, (2) an online dashboard using mHealth on Google Maps allows easy and clear interpretation of DP medications regarding hospital performance using multidisciplinary functionalities and show the significant improvement of trends in the reduction of DP medications among all types of hospital, and (3) medical centers and regional hospitals gain a performance improvement in the three types of DP medications better than the disctrict hospitals do. Kendall’s W = 0.78, indicating all the performance rankings, is not unanimous ( = 4.67, d.f. = 2, p = 0.10). CONCLUSIONS The demonstration of a dashboard using mHealth on Google Maps can inspire 42 other quality indicators of TNHIA to be used by hospitals in the future. CLINICALTRIAL Not available
BACKGROUND Burnout (BO), a critical syndrome particularly for nurses in health care settings, substantially affects their physical and psychological status, the institute’s well-being, and indirectly, patient outcomes. However, objectively classifying BO levels has not been defined and noticed in the literature. OBJECTIVE The aim of this study is to build a model using the convolutional neural network (CNN) to develop an app for automatic detection and classification of nurse BO using the Maslach Burnout Inventory–Human Services Survey (MBI-HSS) to help assess nurse BO at an earlier stage. METHODS We recruited 1002 nurses working in a medical center in Taiwan to complete the Chinese version of the 20-item MBI-HSS in August 2016. The k-mean and CNN were used as unsupervised and supervised learnings for dividing nurses into two classes (n=531 and n=471 of suspicious BO+ and BO−, respectively) and building a BO predictive model to estimate 38 parameters. Data were separated into training and testing sets in a proportion 70%:30%, and the former was used to predict the latter. We calculated the sensitivity, specificity, and receiver operating characteristic curve (area under the curve) across studies for comparison. An app predicting respondent BO was developed involving the model’s 38 estimated parameters for a website assessment. RESULTS We observed that (1) the 20-item model yields a higher accuracy rate (0.95) with an area under the curve of 0.97 (95% CI 0.94-0.95) based on the 1002 cases, (2) the scheme named matching personal response to adapt for the correct classification in model drives the prior model’s predictive accuracy at 100%, (3) the 700-case training set with 0.96 accuracy predicts the 302-case testing set reaching an accuracy of 0.91, and (4) an available MBI-HSS app for nurses predicting BO was successfully developed and demonstrated in this study. CONCLUSIONS The 20-item model with the 38 parameters estimated by using CNN for improving the accuracy of nurse BO has been particularly demonstrated in Excel (Microsoft Corp). An app developed for helping nurses to self-assess job BO at an early stage is required for application in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.