This study reports a new white-rot fungus Cerrena sp. WR1, identified based on an 18S rDNA sequence, which can secrete extracellular forms of laccase with a maximal activity reaching 202 000 U l⁻¹ in a 5-l fermenter. A laccase protein, designated Lcc3, was purified and shown to be N-linked glycosylated by PNGase F and liquid chromatography tandem mass spectrometry analyses. The respective full-length cDNA gene (lcc3) of the Lcc3 protein was obtained using polymerase chain reaction-based methods. Kinetic studies showed that the K(m) and k(cat) of the native Lcc3 were 3.27 μM and 934.6 s⁻¹ for 2,2'-Azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid), 849.1 μM and 147.9 s⁻¹ for guaiacol, 392.7 μM and 109.2 s⁻¹ for 2,6-dimethoxyphenol, and 881 μM and 115.5 s⁻¹ for catechol, respectively. The T(m) of Lcc3 was determined at 73.9°C and it showed a long t(½) (120 min) at 50°C. The laccase was highly ethanol resistant, with 80% of its original activity was detected when incubated in 25% ethanol for 14 days. Furthermore, crude enzyme broth or Lcc3 could degrade lignin in kraft paper (26.5%), and showed high decoloration efficiency (90%) on synthetic dye Remazol Brilliant Blue R. Together, these data demonstrate that Cerrena sp. WR1 Lcc3 possesses novel biochemical and kinetic properties that may aid its application in industry.
A surface anchoring motif using the ice nucleation protein (INP) of Xanthomonas campestris pv. campestris BCRC 12,846 for display of transglucosidase has been developed. The transglucosidase gene from Xanthomonas campestris pv. campestris BCRC 12,608 was fused to the truncated ina gene. This truncated INP consisting of N- and C-terminal domains (INPNC) was able to direct the expressed transglucosidase fusion protein to the cell surface of E. coli with apparent high enzymatic activity. The localization of the truncated INPNC-transglucosidase fusion protein was examined by Western blot analysis and immunofluorescence labeling, and by whole-cell enzyme activity in the glucosylation of hydroquinone. The glucosylation reaction was carried out at 40 degrees C for 1 h, which gave 23 g/L of alpha-arbutin, and the molar conversion based on the amount of hydroquinone reached 83%. The use of whole-cells of the wild type strain resulted in an alpha-arbutin concentration of 4 g/L and a molar conversion of 16% only under the same conditions. The results suggested that E. coli displaying transglucosidase using truncated INPNC as an anchoring motif can be employed as a whole-cell biocatalyst in glucosylation.
A fed-batch culture strategy for the production of recombinant Escherichia coli cells anchoring surface-displayed transglucosidase for use as a whole-cell biocatalyst for alpha-arbutin synthesis was developed. Lactose was used as an inducer of the recombinant protein. In fed-batch cultures, dissolved oxygen was used as the feed indicator for glucose, thus accumulation of glucose and acetate that affected the cell growth and recombinant protein production was avoided. Fed-batch fermentation with lactose induction yielded a biomass of 18 g/L, and the cells possessed very high transglucosylation activity. In the synthesis of alpha-arbutin by hydroquinone glucosylation, the whole-cell biocatalysts showed a specific activity of 501 nkat/g cell and produced 21 g/L of arbutin, which corresponded to 76% molar conversion. A sixfold increased productivity of whole cell biocatalysts was obtained in the fed-batch culture with lactose induction, as compared to batch culture induced by IPTG.
We report a detailed characterization of a Ge/Si0.16Ge0.84multiple quantum well (MQW) structure on Ge-on-Si virtual substrate (VS) grown by ultrahigh vacuum chemical vapor deposition by using temperature-dependent photoreflectance (PR) in the temperature range from 10 to 300 K. The PR spectra revealed a wide range of optical transitions from the MQW region as well as transitions corresponding to the light-hole and heavy-hole splitting energies of Ge-on-Si VS. A detailed comparison of PR spectral line shape fits and theoretical calculation led to the identification of various quantum-confined interband transitions. The temperature-dependent PR spectra of Ge/Si0.16Ge0.84MQW were analyzed using Varshni and Bose-Einstein expressions. The parameters that describe the temperature variations of various quantum-confined interband transition energies were evaluated and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.