The random telegraph noise (RTN) time constants, capture (τc) and emission (τe) times, have been extensively used to identify the trap position in the gate oxide by comparing the measured τc-over-τe ratio with the Shockley–Read–Hall (SRH) statistics. However, various factors have been shown to affect the accuracy of the extracted trap depth from the SRH-type models, such as three-dimensional (3D) device electrostatics, atomistic doping, metal gate granularity, and Coulomb energy variation (CEV) of the trap. Focusing on CEV in this work, we assume the trap in gate oxide can be regarded as a floating island and then numerically studied the CEV of the trap with 3D drift-diffusion simulation. Analyzing the simulation data, the extracted trap depth without considering CEV in the SRH statistics are quantitatively compared with the data involved CEV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.