Development of a solar water splitting device requires design of a low-cost, efficient, and non-noble metal compound as alternative to noble metals. For the first time, we showed that CoSe2 can function as co-catalyst in phototoelectrochemical hydrogen production. We designed a heterostructure of p-Si and marcasite-type CoSe2 for solar-driven hydrogen production. CoSe2 successively coupled with p-Si can act as a superior photocathode in the solar-driven water splitting reaction. Photocurrents up to 9 mA cm(-2) were achieved at 0 V vs. reversible hydrogen electrode. Electrochemical impedance spectroscopy showed that the high photocurrents can be attributed to low charge transfer resistance between the Si and CoSe2 interfaces and that between the CoSe2 and electrolyte interfaces. Our results suggest that this CoSe2 is a promising alternative co-catalyst for hydrogen evolution.
Integrated cobalt disulfide (CoS2) co-catalyst passivation layer on Si microwires (MWs) were used as a photocathode for solar hydrogen evolution. Si MWs were prepared by photolithography and dry etching technique. The CoS2-Si photocathodes were subsequently prepared by chemical deposition and thermal sulfidation of the Co(OH)2 outer shell. The optimized onset potential and photocurrent of the CoS2-Si electrode were 0.248 V and −3.22 mA cm −2 (at 0 V), respectively. The best photocatalytic activity of the CoS2-Si electrode resulted from lower charge transfer resistances among the photoabsorber, co-catalyst, and redox couples in the electrolyte. X-ray absorption near edge structure was conducted to investigate the unoccupied electronic states of the CoS2 layer. We propose that more vacancies in the S-3p unoccupied states of the CoS2-Si electrode were present with a lower negative charge of S2 2to form weaker S-H bond strength, promoting water splitting efficiency. Moreover, the CoS2 co-catalyst that completely covered underlying Si MWs, was served as a passivation layer to prevent oxidation and reduce degradation during photoelectrochemical measurements. Therefore, the optimal CoS2-Si electrode maintained the photocurrent at about −3 mA cm −2 (at 0 V) for 9 h, and its hydrogen generation rate was approximately 0.833 μmol min −1 , respectively.
We prepared Ag-Si microflowers as the photocathode for water splitting through a facile chemical method. The photocurrent and the hydrogen evolution rate of partially Ag particle decorated-Si microwires were enhanced through the synergistic effects of Ag co-catalytic and plasmonic assistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.