Information regarding the oceanic environment is crucial for determining species distributions and their habitat preferences. However, in studies on crustaceans, especially swimming crabs, such information remains poorly utilized, and its effects on crab communities in the Taiwan Strait (TS) has not been well documented. The purpose of this study was to understand the relationship between the catch rates of three swimming crab species and environmental factors in the TS. We fitted generalized additive models (GAMs) to logbooks and voyage data recorder data from Taiwanese crab vessels (2011–2015), developed a species distribution model, and predicted catch rates for these three swimming crab species based on the GAM output. The chlorophyll-a (Chl-a) concentration was related to the high catch rates of Chrybdis feriatus and Portunus sanguinolentus, whereas bottom temperature (BT) was related to high catch rates of Portunus pelagicus. The variance percentages for each crab species indicated that high catch rates of C. feriatus and P. sanguinolentus occurred in a Chl-a concentration > 0.5 mg/m3, whereas P. pelagicus catch rates exhibited negative correlations with BTs > 25 °C. The model predicted high catch rates of C. feriatus in the north of the TS during autumn and winter, whereas P. pelagicus was observed to the south during summer and autumn. P. sanguinolentus was predicted to be widely distributed around the TS and distributed further to the northern area during autumn and winter. These findings revealed that each species responds to spatiotemporal environmental variations. Understanding the distributions and habitats of these three crabs is vital in fisheries resource management and conservation planning.
The Taiwan Bank (TB) is located in the southern Taiwan Strait, where the marine environments are affected by South China Sea Warm Current and Kuroshio Branch Current in summer. The bottom water flows upward along the edge of the continental shelf, forming an upwelling region that is an essential high-productivity fishing ground. Using trophic dynamic theory, fishery resources can be converted into primary production required (PPR) by primary production, which indicates the environmental tolerance of marine ecosystems. This study calculated the PPR of benthic and pelagic species, sea surface temperature (SST), upwelling size, and net primary production (NPP) to analyze fishery resource structure and the spatial distribution of PPR in upwelling, non-upwelling, and thermal front (frontal) areas of the TB in summer. Pelagic species, predominated by those in the Scombridae, Carangidae families and Trachurus japonicus, accounted for 77% of PPR (67% of the total catch). The benthic species were dominated by Mene maculata and members of the Loliginidae family. The upwelling intensity was the strongest in June and weakest in August. Generalized additive models revealed that the benthic species PPR in frontal habitats had the highest deviance explained (28.5%). Moreover, frontal habitats were influenced by NPP, which was also the main factor affecting the PPR of benthic species in all three habitats. Pelagic species were affected by high NPP, as well as low SST and negative values of the multivariate El Niño–Southern Oscillation (ENSO) index in upwelling habitats (16.9%) and non-upwelling habitats (11.5%). The composition of pelagic species varied by habitat; this variation can be ascribed to impacts from the ENSO. No significant differences were noted in benthic species composition. Overall, pelagic species resources are susceptible to climate change, whereas benthic species are mostly insensitive to climatic factors and are more affected by NPP.
Basin-scale sampling for high frequency oceanic primary production (PP) is available from satellites and must achieve a strong match-up with in situ observations. This study evaluated a regionally high-resolution satellite-derived PP using a vertically generalized production model (VGPM) with in situ PP. The aim was to compare the root mean square difference (RMSD) and relative percent bias (Bias) in different water masses around Taiwan. Determined using light–dark bottle methods, the spatial distribution of VGPM derived from different Chl-a data of MODIS Aqua (PPA), MODIS Terra (PPT), and averaged MODIS Aqua and Terra (PPA&T) exhibited similar seasonal patterns with in situ PP. The three types of satellite-derived PPs were linearly correlated with in situ PPs, the coefficients of which were higher throughout the year in PPA&T (r2 = 0.61) than in PPA (r2 = 0.42) and PPT (r2 = 0.38), respectively. The seasonal RMSR and bias for the satellite-derived PPs were in the range of 0.03 to 0.09 and −0.14 to −0.39, respectively, which suggests the PPA&T produces slightly more accurate PP measurements than PPA and PPT. On the basis of environmental conditions, the subareas were further divided into China Coast water, Taiwan Strait water, Northeastern upwelling water, and Kuroshio water. The VPGM PP in the four subareas displayed similar features to Chl-a variations, with the highest PP in the China Coast water and lowest PP in the Kuroshio water. The RMSD was higher in the Kuroshio water with an almost negative bias. The PPA exhibited significant correlations with in situ PP in the subareas; however, the sampling locations were insufficient to yield significant results in the China Coast water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.