Ascorbic acid is a multifaceted compound that can perform both antioxidant and pro-oxidant activities in the redox reactions induced by transition metal ions, so its role in nature and especially in the human body is still the subject of debate. In the present study, we have examined the influence of ascorbic acid on lipid peroxidation in a model system that mimics the cell membrane, namely micelles of linoleic acid (LA), induced by chelate complexes of iron and copper ions with quinone-chelator 2-phenyl-4-(butylamino)-naphtholquinoline-7,12-dione (Q1). This quinone effectively generates reactive oxygen species and semiquinone radicals inside cancer cells via a cycling redox reaction. Here it was demonstrated that the absence of quinone-chelator ascorbic acid significantly accelerates the lipid peroxidation induced by both Fe(II) and Cu(II) ions. It has been shown also that Q1 chelate complexes with Fe(II) and Cu(II) ions are redox active in the LA micelles oxidation. No effect of ascorbate was detected on the reactivity of chelate complex with Fe(II) ions. On the other hand, ascorbate performs pro-oxidant activity in Q1-Cu(II) complex induced reaction. We can conclude that ascorbate-driven redox cycling of Q1 may promote its anti-tumor activity.
The goal of the research was to show the limits within which Pr3+ can be used as a linear response probe. Temperature dependencies of lanthanide-induced chemical shifts (LISs) were studied...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.