Generation of realistic high-resolution videos of human subjects is a challenging and important task in computer vision. In this paper, we focus on human motion transfer -generation of a video depicting a particular subject, observed in a single image, performing a series of motions exemplified by an auxiliary (driving) video. Our GAN-based architecture, DwNet, leverages dense intermediate pose-guided representation and refinement process to warp the required subject appearance, in the form of the texture, from a source image into a desired pose. Temporal consistency is maintained by further conditioning the decoding process within a GAN on the previously generated frame. In this way a video is generated in an iterative and recurrent fashion. We illustrate the efficacy of our approach by showing state-of-the-art quantitative and qualitative performance on two benchmark datasets: TaiChi and Fashion Modeling. The latter is collected by us and will be made publicly available to the community.
Although researchers have demonstrated that human mobility is constrained by space, time and social relations, one important factor, namely weather, has been often ignored in the literature. Not only influences what people wear everyday, weather also has a major impact on their mobility. In this paper, we conduct the first large-scale analysis of weather's impact on human mobility in cities. Focusing on a number of major cities, we construct a human mobility dataset from the social network Instagram. We discover that in general nice weather (e.g., moderate temperature and high pressure) has a positive impact on human mobility. Through analyzing mobility at locations of different categories, we further discover that human mobility is less influenced by weather at certain categories such as residences than others including stores and entertainment places.
Feature attribution a.k.a. input salience methods which assign an importance score to a feature are abundant but may produce surprisingly different results for the same model on the same input. While differences are expected if disparate definitions of importance are assumed, most methods claim to provide faithful attributions and point at the features most relevant for a model's prediction. Existing work on faithfulness evaluation is not conclusive and does not provide a clear answer as to how different methods are to be compared. Focusing on text classification and the model debugging scenario, our main contribution is a protocol for faithfulness evaluation that makes use of partially synthetic data to obtain ground truth for feature importance ranking. Following the protocol, we do an in-depth analysis of four standard salience method classes on a range of datasets and shortcuts for BERT and LSTM models and demonstrate that some of the most popular method configurations provide poor results even for simplest shortcuts. We recommend following the protocol for each new task and model combination to find the best method for identifying shortcuts.
We address efficient calculation of influence functions (Koh and Liang 2017) for tracking predictions back to the training data. We propose and analyze a new approach to speeding up the inverse Hessian calculation based on Arnoldi iteration (Arnoldi 1951). With this improvement, we achieve, to the best of our knowledge, the first successful implementation of influence functions that scales to full-size (language and vision) Transformer models with several hundreds of millions of parameters. We evaluate our approach on image classification and sequence-to-sequence tasks with tens to a hundred of millions of training examples. Our code will be available at https://github.com/google-research/jax-influence.
We address efficient calculation of influence functions for tracking predictions back to the training data. We propose and analyze a new approach to speeding up the inverse Hessian calculation based on Arnoldi iteration. With this improvement, we achieve, to the best of our knowledge, the first successful implementation of influence functions that scales to full-size (language and vision) Transformer models with several hundreds of millions of parameters. We evaluate our approach in image classification and sequence-to-sequence tasks with tens to a hundred of millions of training examples. Our code is available at https://github.com/google-research/jax-influence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.