Inherited mutations in the gene BRCA2 predispose carriers to early onset breast cancer, but such mutations account for fewer than 2% of all cases in East Anglia. It is likely that low penetrance alleles explain the greater part of inherited susceptibility to breast cancer; polymorphic variants in strongly predisposing genes, such as BRCA2, are candidates for this role. BRCA2 is thought to be involved in DNA double strand break-repair. Few mice in which Brca2 is truncated survive to birth; of those that do, most are male, smaller than their normal littermates and have high cancer incidence. Here we show that a common human polymorphism (N372H) in exon 10 of BRCA2 confers an increased risk of breast cancer: the HH homozygotes have a 1.31-fold (95% CI, 1.07-1.61) greater risk than the NN group. Moreover, in normal female controls of all ages there is a significant deficiency of homozygotes compared with that expected from Hardy-Weinberg equilibrium, whereas in males there is an excess of homozygotes: the HH group has an estimated fitness of 0.82 in females and 1.38 in males. Therefore, this variant of BRCA2 appears also to affect fetal survival in a sex-dependent manner.
Intragenic deletions of TSG101, the human homolog of a mouse gene (tsg101) that acts to suppress malignant cell growth, were reported in human breast tumours. We screened TSG101 for somatic mutations in DNA and RNA samples isolated from a variety of common human malignancies, EBV-immortalised B-cells, and normal lung parenchyma. Intragenic TSG101 deletions in RNA transcripts were frequently found in all types of samples. Analysis of DNA failed to show genomic rearrangements corresponding to transcripts containing deletions in the same samples. The breakpoints of most transcript deletions coincide with genuine or cryptic splice site sequences, suggesting that they result from alternative or aberrant splicing. A similar spectrum of transcript deletions has previously been described in the putative tumour suppressor gene FHIT. We analysed FHIT in the same series of RNA samples and detected truncated FHIT transcripts frequently in both tumour and normal tissues. In addition, transcripts from TSG101, FHIT and seven other genes were analysed in RNA isolated from normal peripheral blood lymphocytes. Large TSG101 and FHIT intragenic transcript deletions were detected and these appeared to be the predominant transcript iǹ aged' lymphocytes. Similar alterations were not detected in transcripts of the other genes which were analysed. Our ®ndings demonstrate that truncated TSG101 and FHIT transcripts are commonly detected in both normal and malignant tissues and that a signi®cant fraction of these are likely to be the result of aberrant splicing. While we cannot exclude that alterations in TSG101 and FHIT occur during cancer development, our data indicate that in this context the commonly observed transcript abnormalities are misleading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.