Synthetic pigments/non-renewable coloring sources used normally in the textile industry release toxic substances into the environment, causing perilous ecological challenges. To be safer from such challenges of synthetic colorants, academia and industries have explored the use of natural colorants such as microbial pigments. Such explorations have created a fervent interest among textile stakeholders to undertake the dyeing of textile fabrics, especially with fungal pigments. The biodegradable and sustainable production of natural colorants from fungal sources stand as being comparatively advantageous to synthetic dyes. The prospective scope of fungal pigments has emerged in the opening of many new avenues in textile colorants for wide ranging applications. Applying the biotechnological processes, fungal pigments like carotenoids, melanins, flavins, phenazines, quinones, monascins, violacein, indigo, etc. could be extracted on an industrial scale. This review appraises the studies and applications of various fungal pigments in dyeing textile fabrics and is furthermore shedding light on the importance of toxicity testing, genetic manipulations of fungal pigments, and their future perspectives under biotechnological approaches.
The continued universal application of synthetic colorants for decades have caused environmental pollutions and human health vulnerabilities. So, it was indispensable to discover novel natural colorants such as microbial colorants which were safer and better than synthetic colorants. The potential of bacterial pigments for mass production of diversified coloring properties was first prospective and is now getting the notable importance and attention of both the researchers and industries. Literature establishes that the natural colorants produced from microbes were applied in food and pharma products successfully. Apart from serving as food colorants, bacterial pigments have several pharmacological activities like anti-microbial, anti-cancer, anti-oxidant, anti-inflammatory and anti-allergic properties with large economic potential. And, there is vast scope for easy and cheap production of natural colorants in all seasons from bacterial sources, compared to plant sources. Tactics in strain improvement, fermentation conditions, metabolic engineering, and easy extraction techniques are needed to produce high end products. This review highlights the significance of bacterial colorants and summarizes its application in food and pharma industries. Further, the major challenge of lower stability of bacterial pigments and the solution to address it is also appraised.
The effect of the oral administration ofVitex negundo leaf extract on the levels of enzymic and non-enzymic antioxidants were studied in the adjuvant induced arthritic (AIA) rats The levels of antioxidant enzymes such as SOD, CAT, GPx, G6PD, GSH and Vit-C were estimated in various groups of the experimental rats. It was observed that the antioxidant enzyme levels in the AIA were significantly low when compared to normal rats. A significant decrease in enzymic antioxidant-SOD, CAT, GPx, G6PD and non-enzymic antioxidant-GSH, Vit-C were observed in the liver of AIA rats compared to the normal rats. These results suggest that the leaf extract ofVitex negundo possesses antioxidant activity.
The emergence of HIV-TB co-infection and multi-drug resistant strains of Mycobacterium tuberculosis (Mtb) drive the need for new therapeutics against the infectious disease tuberculosis. Among the reported putative TB targets in the literature, the identification and characterization of the most probable therapeutic targets that influence the complex infectious disease, primarily through interactions with other influenced proteins, remains a statistical and computational challenge in proteomic epidemiology. Protein interaction network analysis provides an effective way to understand the relationships between protein products of genes by interconnecting networks of essential genes and its protein-protein interactions for 5 broad functional categories in Mtb. We also investigated the substructure of the protein interaction network and focused on highly connected nodes known as cliques by giving weight to the edges using data mining algorithms. Cliques containing Sulphate assimilation and Shikimate pathway enzymes appeared continuously inspite of increasing constraints applied by the K-Core algorithm during Network Decomposition. The potential target narrowed down through Systems approaches was Prephanate Dehydratase present in the Shikimate pathway this gives an insight to develop novel potential inhibitors through Structure Based Drug Design with natural compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.