Soybean is a predominantly self-pollinated crop. It is also one of the important oilseed legumes. Soybean is an excellent crop having industrial, traditional, culinary, feeding, and cultural roles. Genetic diversity in breeding programs is of prime importance as it ensures the success of any breeding by enhancing the outcomes and results of the plants. The phenomenon wherein the progeny exhibits greater biomass (yield) and a faster rate of development and fertility than its parents is referred to as heterosis. As of now, heterosis is mainly limited to the trait of seed yield and is considered the basis for the development of better (superior) varieties. Male sterility (MS) is extensively used for the production of seeds and the improvement of crops coupled with the traditional breeding programs and molecular technology. Therefore, deployment of MS and heterosis in breeding soybean could yield better outcomes. This review aims to focus on two aspects, namely, MS and heterosis in soybean with its scope for crop improvement.
Angiotensin-converting enzyme I (ACE I) is a zinc-containing metallopeptidase involved in the renin-angiotensin system (RAAS) that helps in the regulation of hypertension and maintains fluid balance otherwise, which results in cardiovascular diseases (CVDs). One of the leading reasons of global deaths is due to CVDs. RAAS also plays a central role in maintaining homeostasis of the CV system. The commercial drugs available to treat CVDs possess several fatal side effects. Hence, phytochemicals like peptides having plant-based origin should be explored and utilized as alternative therapies. Soybean is an important leguminous crop that simultaneously possesses medicinal properties. Soybean extracts are used in many drug formulations for treating diabetes and other disorders and ailments. Soy proteins and its edible products such as tofu have shown potential inhibitory activity against ACE. Thus, this review briefly describes various soy proteins and products that can be used to inhibit ACE thereby providing new scope for the identification of potential candidates that can help in the design of safer and natural treatments for CVDs.
Cardiovascular diseases (CVDs) are one of the major reasons for deaths globally. The renin–angiotensin–aldosterone system (RAAS) regulates body hypertension and fluid balance which causes CVD. Angiotensin-converting enzyme I (ACE I) is the central Zn-metallopeptidase component of the RAAS playing a crucial role in maintaining homeostasis of the cardiovascular system. The available drugs to treat CVD have many side effects, and thus, there is a need to explore phytocompounds and peptides to be utilized as alternative therapies. Soybean is a unique legume cum oilseed crop with an enriched source of proteins. Soybean extracts serve as a primary ingredient in many drug formulations against diabetes, obesity, and spinal cord-related disorders. Soy proteins and their products act against ACE I which may provide a new scope for the identification of potential scaffolds that can help in the design of safer and natural cardiovascular therapies. In this study, the molecular basis for selective inhibition of 34 soy phytomolecules (especially of beta-sitosterol, soyasaponin I, soyasaponin II, soyasaponin II methyl ester, dehydrosoyasaponin I, and phytic acid) was evaluated using in silico molecular docking approaches and dynamic simulations. Our results indicate that amongst the compounds, beta-sitosterol exhibited a potential inhibitory action against ACE I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.