Uricase (urate oxidase EC 1.7.3.3) is a therapeutic enzyme that is widely used to catalyze the enzymatic oxidation of uric acid in the treatment of hyperuricemia and gout diseases. In this study, three bacterial species capable of producing extracellular uricase were isolated from a poultry source and screened based on the size of the clear zone using a uric acid agar plate. The bacterial species capable of producing uricase with the highest uricolytic activity was identified as Bacillus cereus strain DL3 using a 16SrRNA gene sequencing approach. The time-course study of uricase production was performed and the medium was optimized. Carboxymethylcellulose and asparagine were found to be the best carbon and nitrogen sources. Maximum uricolytic activity was observed at pH 7.0 with an inducer concentration of 2.0 g/L. Inoculum size of 5% gave maximum uricolytic activity. The maximum uricolytic activity of 15.43 U/mL was achieved at optimized conditions, which is 1.61 times more than the initial activity. Further, enzymatic stability was determined at different pH and temperature.
Purpose Uricase (Uc), a therapeutic enzyme, is widely used in its PEGylated form to treat hyperuricemia and is largely manufactured by means of random/first generation PEGylation approach. Currently available randomly PEGylated uricase conjugates exhibit inadequacies like reduced uricolytic activity, risk of inducing immunogenic reactions, lack of selectivity, and molecular heterogeneity. In the present study, site-specific/second generation PEGylation strategy involving modification of specific and rare amino acids by means of terminally functionalized PEG polymers was applied. Methods Uricase was conjugated with methoxypolyethy elenglycol-maleimide (mPEG-mal) by means of thiol PEGylation to synthesize monoPEGylated uricase conjugates. For enhancing the yield of monoPEGylated uricase conjugates, response surface methodology was employed to determine the yield of monoPEGylated conjugates using reverse phase high performance liquid chromatography. Using the optimized conditions, the developed method was validated for the production of monoPEGylated uricase conjugates which were further purified by size exclusion fast protein liquid chromatography (SE-FPLC). The molecular weights of the purified conjugates were determined by sodium dodecyl sulfide polyacrylamide gel electrophoresis (SDS-PAGE).
ResultsThe optimum values of reaction conditions were determined as 1:12 concentration ratio of Uc to mPEG-mal, 2.76 kDa as mPEG-mal molecular weight and 3.55 mM EDTA concentration which resulted in a very high conjugate yield of 95.16 %. The conjugate synthesized using the optimized method retained a residual uricolytic activity of 84 % and a thiol group modification extent of 68.3 %. Conclusion The PEGylation reaction was optimized using OVAT and statistical methods. Using the optimized conditions very high yield of conjugates were obtained and RP-HPLC method was used to quantify the PEGylated uricase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.