Alzheimer's disease (AD) is an age-related neurodegenerative disease of the central nervous system correlated with the progressive loss of cognition and memory. β-Amyloid plaques, neurofibrillary tangles and the deficiency in cholinergic neurotransmission constitute the major hallmarks of the AD. Two major hypotheses have been implicated in the pathogenesis of AD namely the cholinergic hypothesis which ascribed the clinical features of dementia to the deficit cholinergic neurotransmission and the amyloid cascade hypothesis which emphasized on the deposition of insoluble peptides formed due to the faulty cleavage of the amyloid precursor protein. Current pharmacotherapy includes mainly the acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor agonist which offer symptomatic therapy and does not address the underlying cause of the disease. The disease-modifying therapy has garnered a lot of research interest for the development of effective pharmacotherapy for AD. β and γ-Secretase constitute attractive targets that are focussed in the disease-modifying approach. Potentiation of α-secretase also seems to be a promising approach towards the development of an effective anti-Alzheimer therapy. Additionally, the ameliorative agents that prevent aggregation of amyloid peptide and also the ones that modulate inflammation and oxidative damage associated with the disease are focussed upon. Development in the area of the vaccines is in progress to combat the characteristic hallmarks of the disease. Use of cholesterol-lowering agents also is a fruitful strategy for the alleviation of the disease as a close association between the cholesterol and AD has been cited. The present review underlines the major therapeutic strategies for AD with focus on the new developments that are on their way to amend the current therapeutic scenario of the disease.
So far, preclinical studies on several antioxidants have shown promise for treating NDs, despite their limitations. The authors do highlight the lack of the adequate animal models for preclinical assessment and this does hinder further progression into clinical trials. Further studies are necessary to fully investigate the potential of these antioxidants as ND therapeutic options.
Background: Glaucoma is a progressive optic neuropathy causing visual impairment and Retinal Ganglionic Cells (RGCs) death gradually posing a need for neuroprotective strategies to minimize the loss of RGCs and visual field. It is recognized as a multifactorial disease, Intraocular Pressure (IOP) being the foremost risk factor. ROCK inhibitors have been probed for various possible indications, such as myocardial ischemia, hypertension, kidney diseases. Their role in neuroprotection and neuronal regeneration has been suggested to be of value in the treatment of neurological diseases, like spinal-cord injury, Alzheimer’s disease and multiple sclerosis but recently Rho-associated Kinase inhibitors have been recognized as potential antiglaucoma agents. Evidence Synthesis: Rho-Kinase is a serine/threonine kinase with a kinase domain which is constitutively active and is involved in the regulation of smooth muscle contraction and stress fibre formation. Two isoforms of Rho-Kinase, ROCK-I (ROCK .) and ROCK-II (ROCK .) have been identified. ROCK II plays a pathophysiological role in glaucoma and hence the inhibitors of ROCK may be beneficial to ameliorate the vision loss. These inhibitors decrease the intraocular pressure in the glaucomatous eye by increasing the aqueous humour outflow through the trabecular meshwork pathway. They also act as anti-scarring agents and hence prevent post-operative scarring after the glaucoma filtration surgery. Their major role involves axon regeneration by increasing the optic nerve blood flow which may be useful in treating the damaged optic neurons. These drugs act directly on the neurons in the central visual pathway, interrupting the RGC apoptosis and therefore serve as a novel pharmacological approach for glaucoma neuroprotection. Conclusion: Based on the results of high-throughput screening, several Rho kinase inhibitors have been designed and developed comprising of diverse scaffolds exhibiting Rho kinase inhibitory activity from micromolar to subnanomolar ranges. This diversity in the scaffolds with inhibitory potential against the kinase and their SAR development will be intricated in the present review. Ripasudil is the only Rho kinase inhibitor marketed to date for the treatment of glaucoma. Another ROCK inhibitor AR-13324 has recently passed the clinical trials whereas AMA0076, K115, PG324, Y39983 and RKI-983 are still under trials. In view of this, a detailed and updated account of ROCK II inhibitors as the next generation therapeutic agents for glaucoma will be discussed in this review.
In the current scenario for continuous requirement of better drugs, medicinal chemists must visage the challenging task of preparing novel patentable compounds, combining high activity and selectivity, good drug‐likeness, and pharmacokinetic properties. There is an acute need of new molecules in both lead identification and lead optimization. Chemists thoroughly scrutinize ways to simplify synthetic protocols using green chemistry approaches, for example, microwaves. Reduction in the reaction time by the use of microwaves has emerged as a promising method for bringing out new leads in organic synthesis. Among the azaheterocyclic systems, synthesis of pyrrole moiety has been a highly attractive and an inspiring proposition. It has been found to be an inbuilt pharmacophore of various momentous pharmacologically active compounds in medicinal chemistry. This article outlines the basic principles of microwave technology and its use in the synthesis of pyrrole derivatives wherein this technology has made a tremendous impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.