Objective: This study investigated the remineralization potential of theobromine in comparison to a standard NaF dentifrice. Methods: Three tooth blocks were produced from each of 30 teeth. Caries-like lesion was created on each block using acidified gel. A smaller block was cut from each block for baseline scanning electron microscopy imaging and electron-dispersive spectroscopy (EDS) analysis for surface Ca level. A tooth slice was cut from each lesion-bearing block for transverse microradiography (TMR) quantification of baseline mineral loss (Δz) and lesion depth (LD). Then baseline surface microhardness (SMH) of each lesion was measured. The three blocks from each tooth were assigned to three remineralizing agents: (1) artificial saliva; (2) artificial saliva with theobromine (0.0011 mol/l), and (3) NaF toothpaste slurry (0.0789 mol/l F). Remineralization was conducted using a pH cycling model with storage in artificial saliva. After a 28-day cycle, samples were analyzed using EDS, TMR, and SMH. Intragroup comparison of pre- and posttest data was performed using t tests (p < 0.05). Intergroup comparisons were performed by post hoc multistep comparisons (Tukey). Results: SMH indicated significant (p < 0.01) remineralization only with theobromine (38 ± 32%) and toothpaste (29 ± 16%). With TMR (Δz/lD), theobromine and toothpaste exhibited significantly (p < 0.01) higher mineral gain relative to artificial saliva. With SMH and TMR, remineralization produced by theobromine and toothpaste was not significantly different. With EDS, calcium deposition was significant in all groups, but not significantly different among the groups (theobromine 13 ± 8%, toothpaste 10 ± 5%, and artificial saliva 6 ± 8%). Conclusion: The present study demonstrated that theobromine in an apatite-forming medium can enhance the remineralization potential of the medium.
Theobromine-containing toothpaste promoted dentin tubule occlusion thus shows potential to relief DH.
Introduction:The aim of this study was to correlate lesion depth of natural caries, measured with Polarized Light Microscopy (PLM), to Canary Numbers (CN) derived from The Canary System™ (CS), numerical readings from DIAGNOdent (DD), and lesion scores from ICDAS II.Methods:A total of 20 examination sites on extracted human molars and premolars were selected. The selected examination sites consisted of healthy and enamel caries on smooth and occlusal surfaces of each tooth. Two blinded dentists ranked each examination site using ICDAS II and the consensus score for each examined site was recorded. The same examination sites were scanned with CS and DD, and the CN and DD readings were recorded. After all the measurements were completed, the readings of the three caries detection methods were validated with a histological method, Polarized Light Microscopy (PLM). PLM performed by blinded examiners was used as the ‘gold standard’ to confirm the presence or absence of a caries lesion within each examined site and to determine caries lesion depth.Results:Pearson’s coefficients of correlation with caries lesion depth of CNs, DD readings and ICDAS scores were 0.84, 0.21 and 0.77, respectively. Mean ± SD CN for sound sites (n=3), caries lesion depths <800 µm (n=11), and caries lesion depths >800 µm (n=6) were 11±1, 55±15, and 75±22, respectively. Mean ± SD DD readings for sound sites, caries lesion depths <800 µm, and caries lesion depths >800 µm were 1±1, 7±11, and 8±9, respectively. Mean ± SD ICDAS II scores for sound sites, caries lesion depths <800 µm, and caries lesion depths >800 µm were 0±0, 2±1, and 2±1, respectively. The intra-operator repeatability for the Canary System was .953 (0.913, 0.978).Conclusion:This study demonstrated that the CS exhibits much higher correlation with caries lesion depth compared to ICDAS II and DD. CS may provide the clinician with more information about the size and position of the lesion which might help in monitoring or treating the lesion.The present extracted tooth study found that The Canary System correlates with caries lesion depth more accurately that ICDAS II and DIAGNOdent.
The aim of this study was to evaluate the remineralization potential of three silica-containing NaF dentifrice systems in an intraoral model. Subjects (N = 30) in this randomized, three-phase, 28-day, crossover study served as their own control. Each participant wore a customized orthodontic appliance attached to a mandibular molar and contained one tooth block with caries-like lesion. For each phase, participants engaged in twice-daily brushing for 2 min with one of the following dentifrices: 500 ppm F, 500 ppm F plus functionalized β-tricalcium phosphate (fTCP), and a clinically proven 1,100 ppm F. After each phase, appliances were removed, and specimens were analyzed using surface microhardness (SMH), transverse microradiography (TMR), and cross-sectional microhardness (CSMH). Statistically significant (p < 0.05) remineralization of white-spot lesions relative to baseline occurred for each dentifrice as determined with SMH and TMR. No significant differences (p > 0.05) in SMH were found among the three groups, but trending revealed the 500 ppm F plus fTCP produced 26% and 27% greater SMH recovery relative to 500 and 1,100 ppm F, respectively. Similarly, no significant differences (p > 0.05) in TMR were found among the groups. However, the 500 ppm F plus fTCP dentifrice produced 10% and 38% greater mineral recovery relative to 500 and 1,100 ppm F, respectively, while reducing the lesion depth 30% and 52%, respectively. Significant differences (p < 0.05) in CSMH existed among the three dentifice groups at different enamel depths, but statistical differences (p < 0.05) in relative lesion size were only found between 500 ppm F plus fTCP and 500 ppm F. The combination of fTCP and fluoride in a single-compartment, water-based dentifrice can cooperate with fluoride to produce significant remineralization. These results suggest that the combination of 500 ppm F with fTCP may provide comparable anticaries benefits relative to a 1,100 ppm F dentifrice.
PurposeAn in situ study evaluated the remineralization potential of 225 ppm fluoride (F) rinses with and without a calcium phosphate agent (TCP-Si-Ur) on eroded enamel.Methods20 human patients participated in this IRB approved study. Enamel blocks extracted from 20 human molars were assigned to each of the three study phases (G1, G2, G3). Each block was eroded using 1% citric acid (pH = 2.5), with a slice cut from each block to establish baseline lesion parameters (ie, integrated mineral loss ΔZ, and lesion depth LD) using transverse microradiography (TMR). Participants and assigned blocks were randomly divided into three 28-day phases. The blocks were mounted into modified orthodontic brackets and bonded to the buccal surface of one of the subject’s mandibular molars. The appliance remained in the subject’s mouth for 28 days. Prior to each study phase, participants observed a one-week-washout period using a fluoride-free dentifrice. In each phase, participants brushed with the fluoride-free dentifrice for 1 min, followed by one of the following coded treatments: G1: 225 ppm F + 40 ppm TCP-Si-Ur rinse (1 min); G2: 225 ppm F rinse (1 min); G3: no rinse (saliva-only). After each phase, appliances were removed and specimens were analyzed using TMR.ResultsTMR data (ie, ΔZ and LD) revealed all three groups significantly remineralized eroded enamel (paired t-tests, P < 0.001). Net mineralization (% change in ΔZ, LD) were as follows (mean (std.dev): G1: 44.1 (22.6), 30.5 (27.0); G2: 30.0 (7.4), 29.4 (10.5); G3: 23.8 (16.4), 25.7 (15.5). Furthermore, G1 was found to cause significantly more remineralization than G2 (P = 0.039) and G3, (P = 0.002).ConclusionMouthrinse containing 225 ppm F plus TCP-Si-Ur provided significantly greater remineralization relative to 225 ppm F only or saliva alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.