This is the first report on characterization of DHN melanin produced by a novel strain of A. bridgeri and may find potential application as a natural antioxidant in the cosmetic and pharmaceutical industries.
In an ongoing survey for bioactive potential of microorganisms from different biosphere zones of India, a new Chrysosporium lobatum strain BK-3 was isolated from soil sample collected from a biodiversity hotspot, Kaziranga National Park, Assam, India. Bioactivity-guided purification resulted in the isolation of two bioactive compounds whose chemical structures were elucidated by 1H and 13C Nuclear Magnetic Resonance (NMR), 2D-NMR, Fourier Transform Infra-red (FT-IR) and mass spectroscopic techniques, and were identified as α, β-dehydrocurvularin and curvularin. Only curvularin exhibited 80% acetylcholinesterase (AChE) inhibitory activity. Detailed ligand receptor binding interactions were studied for curvularin by molecular docking studies. Further, both curvularin and α, β-dehydrocurvularin had similar level of cytotoxicity against different human tumour cell lines like A549, HeLa, MDA-MB-231 and MCF-7, while α, β-dehydrocurvularin was active against COLO 205 with a IC50 of 7.9 μM, but curvularin was inactive. α, β-Dehydrocurvularin also showed good superoxide anion scavenging activity with an EC50 value of 16.71 μg ml-1. Hence, both these compounds exhibited differences in bioactive profiles and this was probably associated with their minor structural differences. This is a first report on bioactive compounds exhibiting AChE inhibitory, cytotoxicity and antioxidant activities from Chrysosporium lobatum strain BK-3.Electronic supplementary materialThe online version of this article (doi:10.1186/2193-1801-2-122) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.