The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.
Anthraquinones (AQ), unveiling large structural diversity, among polyketides demonstrate a wide range of applications. The hydroxy anthraquinones (HAQ), a group of anthraquinone derivatives, are secondary metabolites produced by bacteria and eukaryotes. Plant-based HAQ are well-studied unlike bacterial HAQ and applied as herbal medicine for centuries. Bacteria are known to synthesize a wide variety of structurally diversified HAQ through polyketide pathways using polyketide synthases (I, II & III) principally through polyketide synthase-II. The actinobacteria especially the genus Streptomyces and Micromonospora represent a rich source of HAQ, however novel HAQ are reported from the rare actinobacteria genera (Salinospora, Actinoplanes, Amycoloptosis, Verrucosispora, Xenorhabdus, and Photorhabdus. Though several reviews are available on AQ produced by plants and fungi, however none on bacterial AQ. The current review focused on sources of bacterial HAQ and their structural diversity and biological activities along with toxicity and side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.